Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
kakaruto ff
Xem chi tiết
HT.Phong (9A5)
30 tháng 8 2023 lúc 10:56

Ta có: 

\(A=\sqrt{4\sqrt{x}-x}\) (ĐK: \(16\ge x\ge0\)

Mà: \(\sqrt{4\sqrt{x}-x}\ge0\forall x\) 

Dấu "=" xảy ra:

\(4\sqrt{x}-x=0\)

\(\Leftrightarrow4\sqrt{x}-\left(\sqrt{x}\right)^2=0\)

\(\Leftrightarrow\sqrt{x}\left(4-\sqrt{x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\4-\sqrt{x}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)

Vậy: \(A_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)

Nguyễn Khánh Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 15:06

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

Trần Thị Ngọc Diệp
Xem chi tiết
Trên con đường thành côn...
14 tháng 11 2021 lúc 20:28

Ta có:

\(A=\sqrt{1-x}+\sqrt{1+x}\) \(\left(-1\le x\le1\right)\)

\(=1.\sqrt{1-x}+1.\sqrt{1+x}\)

Áp dụng BĐT Bunhiacopxki, ta có:

\(A=1.\sqrt{1-x}+1.\sqrt{1+x}\)

\(\le\sqrt{\left(1^2+1^2\right).\left(1-x+1+x\right)}=\sqrt{2.2}=2\)

Vậy \(A_{max}=2\), đạt được khi và chỉ khi \(\dfrac{1}{\sqrt{1-x}}=\dfrac{1}{\sqrt{1+x}}\Leftrightarrow1-x=1+x\Leftrightarrow x=0\)

subjects
Xem chi tiết
Nguyễn Bá Minh Nhật
26 tháng 12 2022 lúc 14:50

đợi tý

when the imposter is sus
28 tháng 12 2022 lúc 21:07

a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min

Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)

\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)

Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)

Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0

b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min

Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)

\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)

Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)

Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0

Câu c) và d) thì tự làm, ko có rảnh =))))

Dương đình minh
18 tháng 8 2023 lúc 16:46

Đã trả lời rồi còn độ tí đồ ngull

....
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 6 2021 lúc 17:11

Với các số thực không âm a; b ta luôn có BĐT sau:

\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) (bình phương 2 vế được \(2\sqrt{ab}\ge0\) luôn đúng)

Áp dụng:

a. 

\(A\ge\sqrt{x-4+5-x}=1\)

\(\Rightarrow A_{min}=1\) khi \(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

\(A\le\sqrt{\left(1+1\right)\left(x-4+5-x\right)}=\sqrt{2}\) (Bunhiacopxki)

\(A_{max}=\sqrt{2}\) khi \(x-4=5-x\Leftrightarrow x=\dfrac{9}{2}\)

b.

\(B\ge\sqrt{3-2x+3x+4}=\sqrt{x+7}=\sqrt{\dfrac{1}{3}\left(3x+4\right)+\dfrac{17}{3}}\ge\sqrt{\dfrac{17}{3}}=\dfrac{\sqrt{51}}{3}\)

\(B_{min}=\dfrac{\sqrt{51}}{3}\) khi \(x=-\dfrac{4}{3}\)

\(B=\sqrt{3-2x}+\sqrt{\dfrac{3}{2}}.\sqrt{2x+\dfrac{8}{3}}\le\sqrt{\left(1+\dfrac{3}{2}\right)\left(3-2x+2x+\dfrac{8}{3}\right)}=\dfrac{\sqrt{510}}{6}\)

\(B_{max}=\dfrac{\sqrt{510}}{6}\) khi \(x=\dfrac{11}{30}\)

Edogawa Conan
30 tháng 6 2021 lúc 17:11

a)Ta có:A=\(\sqrt{x-4}+\sqrt{5-x}\)

        =>A2=\(x-4+2\sqrt{\left(x-4\right)\left(5-x\right)}+5-x\)

        =>A2= 1+\(2\sqrt{\left(x-4\right)\left(5-x\right)}\ge1\)

        =>A\(\ge\)1

Dấu '=' xảy ra <=> x=4 hoặc x=5

Vậy,Min A=1 <=>x=4 hoặc x=5

Còn câu b tương tự nhé

Nguyễn Xuân Khoa
Xem chi tiết
Adu vip
Xem chi tiết
Lê Thị Thục Hiền
1 tháng 7 2021 lúc 23:03

Đk: \(2\le x\le4\)

Áp dụng BĐT bunhiacopxki có:

\(P^2=\left(\sqrt{x-2}+3\sqrt{4-x}\right)^2\le\left(1+3^2\right)\left(x-2+4-x\right)\)

\(\Leftrightarrow P^2\le20\)\(\Leftrightarrow P\le2\sqrt{5}\)

Dấu "=" xảy ra khi \(\sqrt{x-2}=\dfrac{\sqrt{4-x}}{3}\) \(\Leftrightarrow x=\dfrac{11}{5}\) (tm đk)

Có \(P^2=8\left(4-x\right)+6\sqrt{\left(x-2\right)\left(4-x\right)}+2\ge2\)\(\Rightarrow P\ge\sqrt{2}\)

Dấu "=" xảy ra khi x=4 (tm)

Arikata Rikiku
Xem chi tiết
tth_new
19 tháng 9 2019 lúc 16:43

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?

Lê Đông Sơn
20 tháng 9 2019 lúc 7:11

khó quá đây là toán lớp mấy

Lê Hồ Trọng Tín
20 tháng 9 2019 lúc 10:10

Bài 2: Thực sự không chắc lắm về cách này

\(y=\frac{x^2}{x^2-5x+7}\Rightarrow x^2\left(y-1\right)-5yx+7y=0\)

Coi pt trên là pt bậc 2 ẩn x, dùng điều kiện có nghiệm của pt bậc 2 ta có \(\Delta=25y^2-28y\left(y-1\right)=28y-3y^2\ge0\Leftrightarrow28y\ge3y^2\)

Xét y âm, chia 2 vế của bất đẳng thức cho y âm ta được \(y\ge\frac{28}{3}\)không thỏa

Xét y dương ta thu được \(y\le\frac{28}{3}\), cái này thì em không không biết có nghiệm x không nhờ mọi người kiểm tra dùm

Vậy Maxy=28/3 còn Miny=0 (cái min thì dễ hà )

Nguyễn Anh
Xem chi tiết
Hai, Anh Nguyen
Xem chi tiết
shitbo
2 tháng 7 2021 lúc 9:05

Áp dụng bất đẳng thức Bu-nhia-cốp-xki ta được:

\(\left(x-2+4-x\right)\left(1+9\right)\ge\left(\sqrt{x-2}+3\sqrt{4-x}\right)^2\).

\(\Leftrightarrow20\ge P^2\Leftrightarrow-\sqrt{20}\le P\le\sqrt{20}.\)

Dấu bằng bạn tự tìm dấu bằng xảy ra của BĐT Bunhiacopxki nha, trên mạng có nhiều.

Khách vãng lai đã xóa

ờ .....ừm ko biết nhiều cho lắm

Khách vãng lai đã xóa