tính giá trị phân thức A=\(3x-2y/3x=+2y\)
biết rằng:9x2+4y2=20xy
Tính giá trị của phân thức A = 3 x - 2 y 3 x + 2 y biết rằng 9 x 2 + 4 y 2 = 20 x y , và 2y < 3x < 0.
Tính giá trị của phân thức A=\(\dfrac{3x-5y}{3x+7y}\), biết rằng 9x2+4y2=20xy, và 2y<3x<0
Tính giá trị của phân thức \(A=\dfrac{3x-2y}{3x+2y}\), biết rằng: \(9x^2+4y^2=20xy\) và 2y<3x<0
Ta có: \(A^2=\dfrac{\left(3x-2y\right)^2}{\left(3x+2y\right)^2}\)
\(=\dfrac{9x^2+4x^2-12xy}{9x^2+4x^2+12xy}\)
\(=\dfrac{20xy-12xy}{20x^2+12xy}\)
\(=\dfrac{8xy}{32xy}=\dfrac{1}{4}\)
\(\Leftrightarrow A\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)(1)
Vì 2y<3x<0 nên 3x-2y>0 và 3x+2y<0
hay \(A=\dfrac{3x-2y}{3x+2y}< 0\)(2)
Từ (1) và (2) suy ra \(A=-\dfrac{1}{2}\)
Vậy: \(A=-\dfrac{1}{2}\)
TÍnh giá trị của phân thức A=\(\frac{3x-2y}{3x+2y}\), biết rằng 9x\(^2\)+4y\(^2\)= 20xy và 2y<3x<0
Ta có: \(A^2=\frac{9x^2+4y^2-12xy}{9x^2+4y^2+12xy}=\frac{20xy-12xy}{20xy+12xy}=\frac{8xy}{32xy}=\frac{1}{4}\)
Vì \(2y< 3x< 0\Rightarrow3x-2y>0,3x+2y< 0\Rightarrow A< 0\)
Vậy A= \(\frac{-1}{2}\)
Ta có :
\(A^2=\frac{9x^2+4y^2-12xy}{9x^2+4y^2+12xy}\)\(=\frac{20xy-12xy}{20xy+12xy}\)\(=\frac{8xy}{32xy}\)\(=\frac{1}{4}\)
\(Do\)\(2y< 3x< 0\Rightarrow3x-2y>0;3x+2y< 0\Rightarrow A< 0\)
Vậy \(A=-\frac{1}{2}\)
Tính giá trị phân thức \(A=\frac{3x-2y}{3x+2y}\)
biết rằng \(9x^2+4y^2=20xy\)
và \(2y< 3x< 0.\)
Ta có \(9x^2+4y^2=20xy\Leftrightarrow9x^2+2.3x.2y+4y^2=8xy\Leftrightarrow\left(3x+2y\right)^2=8xy\)\(32xy\)
Mặt khác \(9x^2+4y^2=20xy\Leftrightarrow9x^2-2.3x.2y+4y^2=8xy\Leftrightarrow\left(3x-2y\right)^2=8xy\)
\(\Rightarrow\frac{\left(3x-2y\right)^2}{\left(3x+2y\right)^2}=\frac{8xy}{32xy}=\frac{1}{4}\)\(\Leftrightarrow\left(\frac{3x-2y}{3x+2y}\right)^2=\frac{1}{4}\Leftrightarrow\frac{3x-2y}{3x+2y}=+-\frac{1}{2}\)
Do \(2y< 3x< 0\Rightarrow A=-\frac{1}{2}\)
Cho hệ 9 x 2 − 4 y 2 = 5 log m 3 x + 2 y − log 3 3 x − 2 y = 1 có nghiệm x ; y thỏa mãn 3 x + 2 y ≤ 5. Khi đó giá trị lớn nhất của m là
A. -5
B. log 3 5
C. 5
D. log 5 3
Đáp án C
Ta có: 9 x 2 − 4 y 2 = 5 ⇔ 3 x + 2 y 3 x − 2 y = 5 ⇔ 3 x − 2 y = 5 3 x + 2 y
Khi đó: log m 3 x + 2 y = log 3 3 x − 2 y = 1
⇔ log m 3 x + 2 y − log 3 5 3 x + 2 y = 1
⇔ log m 3 x + 2 y + log 3 3 x + 2 y − log 3 5 = 1 ⇔ log m 3. log 3 3 x + 2 y + log 3 3 x + 2 y = log 3 15 ⇔ log 3 3 x + 2 y 1 + log m 3 = log 3 15
Vì 3 x + 2 y ≤ 5
nên log 3 3 x + 2 y ≤ log 3 5 ⇒ log 3 15 1 + log m 3 ≤ log 3 5
⇔ log 3 15 log 3 5 ≤ 1 + log m 3
⇔ log m 3 ≥ log 5 15 − 1 = log 5 3 ⇔ m ≤ 5.
Tính giá trị của A=\(\frac{3x-2y}{3x+2y}\)biết rằng \(9x^2+4y^2=20xy\)và \(2y< 3x< 0\)
Ta có: \(9x^2+4y^2=20xy\Leftrightarrow9x^2-12xy+4y^2=8xy\Leftrightarrow\left(3x-2y\right)^2=8xy\) (1)
Mặt khác: \(9x^2+4y^2=20xy\Leftrightarrow9x^2+12xy+4y^2=32xy\Leftrightarrow\left(3x+2y\right)^2=32xy\) (2)
Từ (1) và (2) => \(\frac{\left(3x-2y\right)^2}{\left(3x+2y\right)^2}=\frac{8xy}{32xy}\Leftrightarrow\left(\frac{3x-2y}{3x+2y}\right)^2=\frac{1}{4}\Leftrightarrow\frac{3x-2y}{3x+2y}=\pm\frac{1}{2}\)
Mà \(2y< 3x< 0\Rightarrow A=\frac{3x-2y}{3x+2y}=\frac{-1}{2}\)
Cho 9x2+4y2=20xy và 2y<3x<0. Tính giá trị của biểu thức A=(3x-2y)/(3x+2y)
Giải đúng tick nha
ta có
9x2+12xy+4y2=32xy
=>(3x+2y)2=32xy =>3x+2y=\(\sqrt{32xy}\)
mặt khác
9x2-12xy+4y2=8xy
=>(3x-2y)2=8xy =>3x-2y=\(\sqrt{8xy}\)
vậy \(\frac{3x-2y}{3x+2y}=\frac{\sqrt{8xy}}{\sqrt{32xy}}\)
=0,5
đề này có trong violimpic vòng 15
hôm qua mình đi thi có gặp bài này ko bt sai hay đúng nữa
mà hình như mình làm sai dấu
1,phân tích mỗi đa thức sau thành phân tử
a,(x+2y)2-(x-y)2
b,(x+1)3+(x-1)3
c,9x2-3x+2y-4y2
d,4x2-4xy+2x-y+y2
e,x3+3x2+3x+1-y3
g,x3-2x2y+xy2-4x
a) \(\left(x+2y\right)^2-\left(x-y\right)^2=\left(x+2y+x-y\right)\left(x+2y-x+y\right)\)
\(=\left(2x+y\right).3y\)
b) \(\left(x+1\right)^3+\left(x-1\right)^3\)
\(=\left(x+1+x-1\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\right]\)
\(=2x\left[\left(x+1\right)^2-\left(x^2-1\right)+\left(x-1\right)^2\right]\)
c) \(9x^2-3x+2y-4y^2\)
\(=9x^2-4y^2-3x+2y\)
\(=\left(3x-2y\right)\left(3x+2y\right)-\left(3x-2y\right)\)
\(=\left(3x-2y\right)\left[3x+2y-1\right]\)
d) \(4x^2-4xy+2x-y+y^2\)
\(=4x^2-4xy+y^2+2x-y\)
\(=\left(2x-y\right)^2+2x-y\)
\(=\left(2x-y\right)\left(2x-y+1\right)\)
e) \(x^3+3x^2+3x+1-y^3\)
\(=\left(x+1\right)^3-y^3\)
\(=\left(x+1-y\right)\left[\left(x+1\right)^2+y\left(x+1\right)+y^2\right]\)
g) \(x^3-2x^2y+xy^2-4x\)
\(=x\left(x^2-2xy+y^2\right)-4x\)
\(=x\left(x-y\right)^2-4x\)
\(=x\left[\left(x-y\right)^2-4\right]\)
\(=x\left(x-y+2\right)\left(x-y-2\right)\)
a) (x + 2y)² - (x - y)²
= (x + 2y - x + y)(x + 2y + x - y)
= 3y(2x + y)
b) (x + 1)³ + (x - 1)³
= (x + 1 + x - 1)[(x + 1)² - (x + 1)(x - 1) + (x - 1)²]
= 2x(x² + 2x + 1 - x² + 1 + x² - 2x + 1)
= 2x(x² + 3)
c) 9x² - 3x + 2y - 4y²
= (9x² - 4y²) - (3x - 2y)
= (3x - 2y)(3x + 2y) - (3x - 2y)
= (3x - 2y)(3x + 2y - 1)
d) 4x² - 4xy + 2x - y + y²
= (4x² - 4xy + y²) + (2x - y)
= (2x - y)² + (2x - y)
= (2x - y)(2x - y + 1)
e) x³ + 3x² + 3x + 1 - y³
= (x³ + 3x² + 3x + 1) - y³
= (x + 1)³ - y³
= (x + 1 - y)[(x + 1)² + (x + 1)y + y²]
= (x - y + 1)(x² + 2x + 1 + xy + y + y²)
g) x³ - 2x²y + xy² - 4x
= x(x² - 2xy + y² - 4)
= x[(x² - 2xy + y²) - 4]
= x[(x - y)² - 2²]
= x(x - y - 2)(x - y + 2)