Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bống
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 22:42

c: Ta có: \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\)

\(\Leftrightarrow2\sqrt{x-1}=4\)

\(\Leftrightarrow x-1=4\)

hay x=5

e: Ta có: \(\sqrt{4x^2-28x+49}-5=0\)

\(\Leftrightarrow\left|2x-7\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-7=5\\2x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)

Akai Haruma
8 tháng 10 2021 lúc 8:13

a. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{(x-2)^2}=2-x$

$\Leftrightarrow |x-2|=2-x$
$\Leftrightarrow 2-x\geq 0$

$\Leftrightarrow x\leq 2$

b. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x-2}-\frac{1}{5}\sqrt{25}.\sqrt{x-2}=3\sqrt{x-2}-1$

$\Leftrightarrow 2\sqrt{x-2}-\sqrt{x-2}=3\sqrt{x-2}-1$

$\Leftrightarrow 1=2\sqrt{x-2}$

$\Leftrightarrow \frac{1}{2}=\sqrt{x-2}$

$\Leftrightarrow \frac{1}{4}=x-2$

$\Leftrightarrow x=\frac{9}{4}$ (tm)

Akai Haruma
8 tháng 10 2021 lúc 8:16

c. ĐKXĐ: $x\geq 1$

PT $\Leftrightarrow \sqrt{x-1}+\sqrt{9}.\sqrt{x-1}-\sqrt{4}.\sqrt{x-1}=4$

$\Leftrightarrow \sqrt{x-1}+3\sqrt{x-1}-2\sqrt{x-1}=4$

$\Leftrightarrow 2\sqrt{x-1}=4$

$\Leftrightarrow \sqrt{x-1}=2$

$\Leftrightarrow x-1=4$

$\Leftrightarrow x=5$ (tm)

d. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \frac{1}{2}\sqrt{x-2}-4\sqrt{\frac{4}{9}}\sqrt{x-2}+\sqrt{9}.\sqrt{x-2}-5=0$

$\Leftrightarrow \frac{1}{2}\sqrt{x-2}-\frac{8}{3}\sqrt{x-2}+3\sqrt{x-2}-5=0$

$\Leftrightarrow \frac{5}{6}\sqrt{x-2}-5=0$

$\Leftrightarrow \sqrt{x-2}=6$

$\Leftrightarrow x-2=36$

$\Leftrightarrow x=38$ (tm)

 

Hoàng Kiều Quỳnh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 2 2022 lúc 19:59

a: \(=\dfrac{\left|x+2\right|}{x-1}\)

b: \(=x-2y-\left|x-2y\right|\)\(=\left[{}\begin{matrix}x-2y-x+2y=0\\x-2y+x-2y=2x-4y\end{matrix}\right.\)

c: \(=\dfrac{\left|x+2\right|}{\left(x+2\right)\left(x-2\right)}=\pm\dfrac{1}{x-2}\)

bach nhac lam
Xem chi tiết
bach nhac lam
1 tháng 1 2020 lúc 22:39

Akai Haruma, No choice teen, Arakawa Whiter, HISINOMA KINIMADO, tth, Nguyễn Việt Lâm, Phạm Hoàng Lê Nguyên, @Nguyễn Thị Ngọc Thơ

Mn giúp em vs ạ! Thanks trước!

Khách vãng lai đã xóa
Diệu Huyền
2 tháng 1 2020 lúc 8:11

\(c,\left(x^3-3x+2\right)\sqrt{3x-2}-2x^3+6x^2-4x=0\)

\(\Rightarrow\left(x+2\right)\left(x-1\right)^2\sqrt{3x-2}-2x\left(x^2-3x+2\right)=0\)

\(\Rightarrow\left(x+2\right)\left(x-1\right)^2\sqrt{3x-2}-2x\left(x-1\right)\left(x-2\right)=0\)

\(\Rightarrow x=1\)

Hoặc là: \(\Rightarrow\left(x+2\right)\left(x-1\right)\sqrt{3x-2}-2x\left(x-2\right)=0\)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Khách vãng lai đã xóa
Nguyễn Thị Ngọc Thơ
10 tháng 1 2020 lúc 23:26

Còn cần nữa không, hôm bữa chị giải ra câu a mà quên béng mất, mấy hôm lại bận làm thuyết trình Tiếng Anh nên bỏ dở.

Giờ mà cần chị cũng chỉ làm được câu a thôi '-'

Khách vãng lai đã xóa
kietdeptrai
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 10 2023 lúc 10:28

a: ĐKXĐ: x>=1

\(\dfrac{1}{2}\sqrt{x-1}-\sqrt{4x-4}+3=0\)

=>\(3+\dfrac{1}{2}\sqrt{x-1}-2\sqrt{x-1}=0\)

=>\(3-\dfrac{3}{2}\sqrt{x-1}=0\)

=>\(\dfrac{3}{2}\sqrt{x-1}=3\)

=>\(\sqrt{x-1}=2\)

=>x-1=4

=>x=5(nhận)

b: \(\sqrt{x^2-4x+4}+x-2=0\)

=>\(\sqrt{\left(x-2\right)^2}=-x+2\)

=>|x-2|=-(x-2)

=>x-2<=0

=>x<=2

c: 

ĐKXĐ: 7-x>=0

=>x<=7

\(\sqrt{7-x}+1=x\)

=>\(\sqrt{7-x}=x-1\)

=>\(\left\{{}\begin{matrix}x-1>=0\\7-x=x^2-2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1< =x< =7\\x^2-2x+1-7+x=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}1< =x< =7\\x^2-x-6=0\end{matrix}\right.\Leftrightarrow x=3\)

Cửu Lục Nguyệt
Xem chi tiết
bach nhac lam
Xem chi tiết
Vũ Huy Hoàng
1 tháng 7 2019 lúc 16:34

b) Nhẩm thấy \(x=-2\) là nghiệm, ta xét trường hợp:

* Với \(x>-2\) thì

\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}>-1+0+1=0=VP\)

* Với \(x< -2\) thì

\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}< -1+0+1=0=VP\)

Do đó pt có nghiệm duy nhất \(x=-2\)

tthnew
1 tháng 7 2019 lúc 17:02

c) Đặt \(\sqrt[4]{1-x}=a;\sqrt[4]{1+x}=b\)

\(\Rightarrow a^4+b^4=2\)

Theo đề bài \(a+b+ab=3\Rightarrow a+b=3-ab\)

Cần giải cái hệ (đợi một xíu em ăn xong em làm tiếp hoặc là nếu bận thì thứ 6 tuần này em làm):v \(\left\{{}\begin{matrix}a^4+b^4=3\\a+b=3-ab\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a^2+b^2\right)^2=3+2a^2b^2\\ab=3-a-b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[\left(a+b\right)^2-2ab\right]^2=3+2\left(3-a-b\right)^2\\ab=3-a-b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[\left(a+b\right)^2-2\left(3-a-b\right)\right]^2=3+2\left(3-a-b\right)^2\\ab=3-a-b\end{matrix}\right.\)

bach nhac lam
1 tháng 7 2019 lúc 16:10

tth, Hoàng Tử Hà, Bonking, Akai Haruma, @Nguyễn Việt Lâm

Quoc Tran Anh Le

giúp mk vs!

mk cảm ơn nhiều!

Nhi Quỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 11 2023 lúc 21:16

a: ĐKXĐ: x>=5

\(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\cdot\sqrt{9x-45}=4\)

=>\(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)

=>\(2\sqrt{x-5}=4\)

=>\(\sqrt{x-5}=2\)

=>x-5=4

=>x=9(nhận)

b: ĐKXĐ: x>=1/2

\(\sqrt{2x-1}-\sqrt{8x-4}+5=0\)

=>\(\sqrt{2x-1}-2\sqrt{2x-1}+5=0\)

=>\(5-\sqrt{2x-1}=0\)

=>\(\sqrt{2x-1}=5\)

=>2x-1=25

=>2x=26

=>x=13(nhận)

c: \(\sqrt{x^2-10x+25}=2\)

=>\(\sqrt{\left(x-5\right)^2}=2\)

=>\(\left|x-5\right|=2\)

=>\(\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)

d: \(\sqrt{x^2-14x+49}-5=0\)

=>\(\sqrt{x^2-2\cdot x\cdot7+7^2}=5\)

=>\(\sqrt{\left(x-7\right)^2}=5\)

=>|x-7|=5

=>\(\left[{}\begin{matrix}x-7=5\\x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\\x=2\end{matrix}\right.\)

⭐Hannie⭐
1 tháng 11 2023 lúc 21:19

\(a,\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\left(đkxđ:x\ge5\right)\\ \Leftrightarrow\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\\ \Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\\ \Leftrightarrow2\sqrt{x-5}=4\\ \Leftrightarrow\sqrt{x-5}=2\\ \Leftrightarrow x-5=4\\ \Leftrightarrow x=9\left(tm\right)\)

\(b,\sqrt{2x-1}-\sqrt{8x-4}+5=0\left(đkxđ:x\ge\dfrac{1}{2}\right)\\ \Leftrightarrow\sqrt{2x-1}-\sqrt{4\left(2x-1\right)}=-5\\ \Leftrightarrow\sqrt{2x-1}-2\sqrt{2x-1}=-5\\ \Leftrightarrow-\sqrt{2x-1}=-5\\ \Leftrightarrow\sqrt{2x-1}=5\\ \Leftrightarrow2x-1=25\\ \Leftrightarrow2x=26\\ \Leftrightarrow x=13\left(tm\right)\)

\(c,\sqrt{x^2-10x+25}=2\\ \Leftrightarrow\sqrt{\left(x-5\right)^2}=2\\ \Leftrightarrow\left|x-5\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)

\(d,\sqrt{x^2-14x+49}-5=0\\ \Leftrightarrow\sqrt{\left(x-7\right)^2}=5\\ \Leftrightarrow\left|x-7\right|=5\\ \Leftrightarrow\left[{}\begin{matrix}x-7=5\\x-7=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=12\\x=2\end{matrix}\right.\)

Cee Hee
1 tháng 11 2023 lúc 21:31

\(a)ĐKXĐ:x\ge5\\ \sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\\ \Leftrightarrow\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\\ \Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\\ \Leftrightarrow2\sqrt{x-5}=4\\ \Leftrightarrow\sqrt{x-5}=\dfrac{4}{2}\\ \Leftrightarrow\sqrt{x-5}=2\\ \Leftrightarrow\left(\sqrt{x-5}\right)^2=2^2\\ \Leftrightarrow x-5=4\\ \Leftrightarrow x=4+5\\ \Leftrightarrow x=9\left(tmđk\right)\)

Vậy \(S=\left\{9\right\}\)

\(b)ĐKXĐ:x\ge2\\ \sqrt{2x-1}-\sqrt{8x-4}+5=0\\ \Leftrightarrow\sqrt{2x-1}-\sqrt{8x-4}=0-5\\ \Leftrightarrow\sqrt{2x-1}-\sqrt{4\left(2x-1\right)}=-5\\ \Leftrightarrow\sqrt{2x-1}-2\sqrt{2x-1}=-5\\ \Leftrightarrow-\sqrt{2x-1}=-5\\ \Leftrightarrow-\left(\sqrt{2x-1}\right)=\left(-5\right)^2\\ \Leftrightarrow-2x+1=-25\\ \Leftrightarrow-2x=\left(-25\right)-1\\ \Leftrightarrow-2x=-26\\ \Leftrightarrow x=\dfrac{-26}{-2}\\ \Leftrightarrow x=13\left(tmđk\right)\)

Vậy \(S=\left\{13\right\}\)

\(c)\sqrt{x^2-10x+25}=2\\ \Leftrightarrow\sqrt{\left(x-5\right)^2}=2\\ \Leftrightarrow\left|x-5\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2+5\\x=\left(-2\right)+5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)

Vậy: \(S=\left\{7;3\right\}\)

\(d)\sqrt{x^2-14x+49}-5=0\\ \Leftrightarrow\sqrt{x^2-14x+49}=0+5\\ \Leftrightarrow\sqrt{x^2-14x+49}=5\\ \Leftrightarrow\sqrt{\left(x-7\right)^2}=5\\ \Leftrightarrow\left|x-7\right|=5\\ \Leftrightarrow\left[{}\begin{matrix}x-7=5\\x-7=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5+7\\x=\left(-5\right)+7\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=12\\x=2\end{matrix}\right.\)

Vậy \(S=\left\{12;2\right\}.\)

manh
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 19:51

a: ĐKXĐ: x-5>=0

=>x>=5

\(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\cdot\sqrt{9x-45}=4\)

=>\(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)

=>\(2\sqrt{x-5}=4\)

=>x-5=4

=>x=9(nhận)

b: ĐKXĐ: x-1>=0

=>x>=1

\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}=4\)

=>\(\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=4\)

=>\(-2\sqrt{x-1}=4\)

=>\(\sqrt{x-1}=-2\)(vô lý)

Vậy: Phương trình vô nghiệm

c: ĐKXĐ: x-2>=0

=>x>=2

\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot\sqrt{9x-18}+6\cdot\sqrt{\dfrac{x-2}{81}}=-4\)

=>\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot3\sqrt{x-2}+6\cdot\dfrac{\sqrt{x-2}}{9}=-4\)

=>\(\sqrt{x-2}\left(\dfrac{1}{3}-2+\dfrac{2}{3}\right)=-4\)

=>\(-\sqrt{x-2}=-4\)

=>x-2=16

=>x=18(nhận)

d: ĐKXĐ: x+3>=0

=>x>=-3

\(\sqrt{9x+27}+4\sqrt{x+3}-\dfrac{3}{4}\cdot\sqrt{16x+48}=0\)

=>\(3\sqrt{x+3}+4\sqrt{x+3}-\dfrac{3}{4}\cdot4\sqrt{x+3}=0\)

=>\(4\sqrt{x+3}=0\)

=>x+3=0

=>x=-3(nhận)

Nhật Văn
15 tháng 10 2023 lúc 19:50

a) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\)

\(2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(2\sqrt{x-5}=4\)

\(\sqrt{x-5}=2\)

\(\left|x-5\right|=4\)

=> \(x-5=\pm4\)

\(x=\pm4+5\)

\(x=9;x=1\)

Vậy x=9; x=1

Nhật Văn
15 tháng 10 2023 lúc 19:53

b) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}=4\)

\(\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=4\)

\(-2\sqrt{x-1}=4\)

\(\sqrt{x-1}=-2\)

=>\(\left|x-1\right|=-2\)

\(x-1=\mp2\)

\(x=-3;x=1\)

Vậy x=-3; x=1

ILoveMath
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 11 2021 lúc 21:14

ĐKXĐ:...

a. Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+4x+16}=a>0\\\sqrt{x+70}=b\ge0\end{matrix}\right.\)

\(\Rightarrow6x^2+10x-92=3a^2-2b^2\)

Pt trở thành:

\(3a^2-2b^2+ab=0\)

\(\Leftrightarrow\left(a+b\right)\left(3a-2b\right)=0\)

\(\Leftrightarrow3a=2b\)

\(\Leftrightarrow9\left(2x^2+4x+16\right)=4\left(x+70\right)\)

\(\Leftrightarrow...\)

 

Nguyễn Việt Lâm
26 tháng 11 2021 lúc 21:16

b. ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)

Phương trình trở thành:

\(a^2+2+ab=3a+b\)

\(\Leftrightarrow a^2-3a+2+ab-b=0\)

\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+b\left(a-1\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(a+b-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+b=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}+\sqrt{1-x}=2\end{matrix}\right.\)

\(\Leftrightarrow...\)