Tìm x biết:
a)\(\sqrt{x=7}\)
b)\(\sqrt{x^3=0}\)
Câu 2: Tìm x biết:
a. \(\sqrt{\left(2x-3\right)^2}=7\)
b. \(\sqrt{64x-121}-\sqrt{25x-50}-\sqrt{4x-1}=20\)
c. \(\sqrt{x^2-9}-3\sqrt{x-3}=0\)
a: \(\Leftrightarrow\left|2x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
a, \(\sqrt{\left(2x-3\right)^2}=7\\ \Rightarrow\left|2x-3\right|=7\\ \Rightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
c, \(\sqrt{x^2-9}-3\sqrt{x-3}=0\\ \Rightarrow\sqrt{x-3}\sqrt{x+3}-3\sqrt{x-3}=0\\ \Rightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x+3=9\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
Tìm x, biết:
a) |x| = 4; b) |x| = \(\sqrt 7 \); c) |x+5| = 0; d) \(\left| {x - \sqrt 2 } \right|\) = 0
a) |x| = 4
\(\left[ {_{x = - 4}^{x = 4}} \right.\)
Vậy \(x \in \{ 4; - 4\} \)
b) |x| = \(\sqrt 7 \)
\(\left[ {_{x = - \sqrt 7 }^{x = \sqrt 7 }} \right.\)
Vậy \(x \in \{ \sqrt 7 ; - \sqrt 7 \} \)
c) ) |x+5| = 0
x+5 = 0
x = -5
Vậy x = -5
d) \(\left| {x - \sqrt 2 } \right|\) = 0
x - \(\sqrt 2 \) = 0
x = \(\sqrt 2 \)
Vậy x =\(\sqrt 2 \)
Tìm x, biết:
a) \(\dfrac{-3}{2}x+\dfrac{1}{4}=\dfrac{1}{2}\left(x+1\right)\)
b) \(\left(6-3\sqrt{x}\right)\left(\left|x\right|-7\right)=0\)
a: \(-\dfrac{3}{2}x+\dfrac{1}{4}=\dfrac{1}{2}\left(x+1\right)\)
=>\(-\dfrac{3}{2}x+\dfrac{1}{4}=\dfrac{1}{2}x+\dfrac{1}{2}\)
=>\(-\dfrac{3}{2}x-\dfrac{1}{2}x=\dfrac{1}{2}-\dfrac{1}{4}\)
=>\(-2x=\dfrac{1}{4}\)
=>\(2x=-\dfrac{1}{4}\)
=>\(x=-\dfrac{1}{4}:2=-\dfrac{1}{8}\)
b: ĐKXĐ: x>=0
\(\left(6-3\sqrt{x}\right)\left(\left|x\right|-7\right)=0\)
=>\(\left\{{}\begin{matrix}6-3\sqrt{x}=0\\\left|x\right|-7=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3\sqrt{x}=6\\\left|x\right|=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=2\\\left[{}\begin{matrix}x=7\left(nhận\right)\\x=-7\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=7\left(nhận\right)\\x=4\left(nhận\right)\end{matrix}\right.\)
Tìm x, biết:
a) \(\sqrt{x^2-2x+1}=2\)
b)\(\sqrt{x^2-1}=x\)
c) \(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
d) \(x-5\sqrt{x-2}=-2\)
e) \(2x-3\sqrt{2x-1}-5=0\)
`a)sqrt{x^2-2x+1}=2`
`<=>sqrt{(x-1)^2}=2`
`<=>|x-1|=2`
`**x-1=2<=>x=3`
`**x-1=-1<=>x=-1`.
Vậy `S={3,-1}`
`b)sqrt{x^2-1}=x`
Điều kiện:\(\begin{cases}x^2-1 \ge 0\\x \ge 0\\\end{cases}\)
`<=>` \(\begin{cases}x^2 \ge 1\\x \ge 0\\\end{cases}\)
`<=>x>=1`
`pt<=>x^2-1=x^2`
`<=>-1=0` vô lý
Vậy pt vô nghiệm
`c)sqrt{4x-20}+3sqrt{(x-5)/9}-1/3sqrt{9x-45}=4(x>=5)`
`pt<=>sqrt{4(x-5)}+sqrt{9*(x-5)/9}-sqrt{(9x-45)*1/9}=4`
`<=>2sqrt{x-5}+sqrt{x-5}-sqrt{x-5}=4`
`<=>2sqrt{x-5}=4`
`<=>sqrt{x-5}=2`
`<=>x-5=4`
`<=>x=9(tmđk)`
Vậy `S={9}.`
`d)x-5sqrt{x-2}=-2(x>=2)`
`<=>x-2-5sqrt{x-2}+4=0`
Đặt `a=sqrt{x-2}`
`pt<=>a^2-5a+4=0`
`<=>a_1=1,a_2=4`
`<=>sqrt{x-2}=1,sqrt{x-2}=4`
`<=>x_1=3,x_2=18`,
`e)2x-3sqrt{2x-1}-5=0`
`<=>2x-1-3sqrt{2x-1}-4=0`
Đặt `a=sqrt{2x-1}(a>=0)`
`pt<=>a^2-3a-4=0`
`a-b+c=0`
`<=>a_1=-1(l),a_2=4(tm)`
`<=>sqrt{2x-1}=4`
`<=>2x-1=16`
`<=>x=17/2(tm)`
Vậy `S={17/2}`
d.
ĐKXĐ: $x\geq 2$. Đặt $\sqrt{x-2}=a(a\geq 0)$ thì pt trở thành:
$a^2+2-5a=-2$
$\Leftrightarrow a^2-5a+4=0$
$\Leftrightarrow (a-1)(a-4)=0$
$\Rightarrow a=1$ hoặc $a=4$
$\Leftrightarrow \sqrt{x-2}=1$ hoặc $\sqrt{x-2}=4$
$\Leftrightarrow x=3$ hoặc $x=18$ (đều thỏa mãn)
e. ĐKXĐ: $x\geq \frac{1}{2}$
Đặt $\sqrt{2x-1}=a(a\geq 0)$ thì pt trở thành:
$a^2+1-3a-5=0$
$\Leftrightarrow a^2-3a-4=0$
$\Leftrightarrow (a+1)(a-4)=0$
Vì $a\geq 0$ nên $a=4$
$\Leftrightarrow \sqrt{2x-1}=4$
$\Leftrightarrow x=\frac{17}{2}$
a.
$\sqrt{x^2-2x+1}=2$
$\Leftrightarrow \sqrt{(x-1)^2}=2$
$\Leftrightarrow |x-1|=2$
$\Rightarrow x-1=\pm 2$
$\Leftrightarrow x=3$ hoặc $x=-1$ (đều thỏa mãn)
b. ĐKXĐ: $x\geq 1$ hoặc $x\leq -1$
PT \(\Rightarrow \left\{\begin{matrix} x\geq 0\\ x^2-1=x^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ 1=0\end{matrix}\right.\) (vô lý)
Vậy pt vô nghiệm
c. ĐKXĐ: $x\geq 5$
PT $\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=4$
$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=2$
$\Leftrightarrow x=2^2+5=9$ (thỏa mãn)
Bài 3: Tìm x biết:
a) \(\sqrt{3x-2}=4\)
b) \(\sqrt{4x^2+4x+1}-11=5\)
Bài 4: Cho biểu thức
C= \(1\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\) (x > 0, x ≠ 1)
a) Rút gọn C
b) Tìm x để C - 6 < 0
Helpp!!!
Bài 3:
a) \(\sqrt{3x-2}=4\)
⇔\(\sqrt{3x-2}=\sqrt{4^2}\)
⇔\(3x-2=4^2=16\)
\(3x=16+2=18\)
\(x=18:3=6\)
Vậy \(x=6\)
b)\(\sqrt{4x^2+4x+1}-11=5\)
⇔\(\sqrt{\left(2x\right)^2+2\left(2x\right)\cdot1+1^2}-11=5\)
⇔\(\sqrt{\left(2x+1\right)^2}-11=5\)
TH1:
⇔\(\left(2x+1\right)-11=5\)
\(2x+1=5+11=16\)
\(2x=16-1=15\)
\(x=15:2=7,5\)
TH2:
⇔\(\left(2x+1\right)-11=-5\)
\(2x-1=-5+11=6\)
\(2x=6+1=7\)
\(x=7:2=3,5\)
Vậy \(x=\left\{7,5;3,5\right\}\)
(Câu này mình không chắc chắn lắm)
(Học sinh lớp 6 đang làm bài này)
Bài 4:
a: \(C=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-\sqrt{x}+x+\sqrt{x}}{\sqrt{x}}=\dfrac{2x}{\sqrt{x}}=2\sqrt{x}\)
b: C-6<0
=>C<6
=>\(2\sqrt{x}< 6\)
=>\(\sqrt{x}< 3\)
=>0<=x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0< x< 9\\x\ne1\end{matrix}\right.\)
Bài 3
a)\(\sqrt{3x-2}=4\Leftrightarrow3x-2=16\Leftrightarrow3x=18\Leftrightarrow x=6\)
Vậy PT có nghiệm x=6
b)\(\sqrt{4x^2+4x+1}-11=5\Leftrightarrow\sqrt{\left(2x+1\right)^2}=16\Leftrightarrow2x+1=16hoặc2x+1=-16\)
+)TH1: \(2x+1=16\Leftrightarrow x=\dfrac{15}{2}\Leftrightarrow x=7,5\)
+)TH2:\(2x+1=-16\Leftrightarrow x=\dfrac{17}{2}\Leftrightarrow x=8,5\)
Bài 4
a)\(C=1\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\Leftrightarrow C=\dfrac{x-1}{\sqrt{x}}\left(\dfrac{x-\sqrt{x}+x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\Leftrightarrow C=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}\dfrac{2x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\Leftrightarrow C=\dfrac{2x}{\sqrt{x}}\Leftrightarrow C=2\sqrt{x}\)
\(Vậy\) \(C=2\sqrt{x}\)
2) Tính: (Giải chi tiết từng bước)
a) \(2\sqrt{125}+\dfrac{3}{2}\sqrt{80}-\sqrt{180}-\dfrac{2}{7}\sqrt{245}\)
b) \(\sqrt{11-4\sqrt{7}}-\sqrt{16+6\sqrt{7}}\)
3) Tìm x, biết:
a) \(\sqrt{\left(x-1\right)^2}=4\)
b) \(\sqrt{36x^2-60x+25}=4\)
Bài 2:
a) \(2\sqrt{125}+\dfrac{3}{2}\sqrt{80}-\sqrt{180}-\dfrac{2}{7}\sqrt{245}\)
\(=2\sqrt{5^2\cdot5}+\dfrac{3}{2}\sqrt{4^2\cdot5}-\sqrt{6^2\cdot5}-\dfrac{2}{7}\sqrt{7^2\cdot5}\)
\(=10\sqrt{5}+\dfrac{3\cdot4}{2}\sqrt{5}-6\sqrt{5}-\dfrac{2\cdot7}{7}\sqrt{5}\)
\(=10\sqrt{5}+6\sqrt{6}-6\sqrt{5}-2\sqrt{5}\)
\(=8\sqrt{5}\)
b) \(\sqrt{11-4\sqrt{7}}-\sqrt{16+6\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}\right)^2-2\cdot2\cdot\sqrt{7}+2^2}-\sqrt{\left(\sqrt{7}\right)^2+2\cdot3\cdot\sqrt{7}+3^2}\)
\(=\sqrt{\left(\sqrt{7}-2\right)^2}-\sqrt{\left(\sqrt{7}+3\right)^2}\)
\(=\sqrt{7}-2-\sqrt{7}-3\)
\(=-5\)
\(2a,\\ 2\sqrt{125}+\dfrac{3}{2}.\sqrt{80}-\sqrt{180}-\dfrac{2}{7}\sqrt{245}\\ =2\sqrt{5^2.5}+\dfrac{3}{2}.\sqrt{4^2.5}-\sqrt{6^2.5}-\dfrac{2}{7}.\sqrt{7^2.5}\\ =2.5.\sqrt{5}+\dfrac{3}{2}.4.\sqrt{5}-6\sqrt{5}-\dfrac{2}{7}.7\sqrt{5}\\ =10\sqrt{5}+6\sqrt{5}-6\sqrt{5}-2\sqrt{5}=8\sqrt{5}\)
3:
a: =>|x-1|=4
=>x-1=4 hoặc x-1=-4
=>x=-3 hoặc x=5
b: =>|6x-5|=4
=>6x-5=4 hoặc 6x-5=-4
=>6x=1 hoặc 6x=9
=>x=1/6 hoặc x=3/2
Câu 2: Tìm x biết:
a. \(\sqrt{x-3}=5\)
b. \(\sqrt{2x-1}=\sqrt{3}\)
c. \(\sqrt{1-x}=-1\)
d. \(\sqrt{\left(x-1\right)^2}=1\)
\(a,ĐK:x\ge3\\ PT\Leftrightarrow x-3=5\Leftrightarrow x=8\left(tm\right)\\ b,ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow2x-1=3\Leftrightarrow x=2\left(tm\right)\\ c,Vì.\sqrt{1-x}\ge0>-1.nên.pt.vô.nghiệm\\ d,PT\Leftrightarrow\left|x-1\right|=1\Leftrightarrow\left[{}\begin{matrix}x-1=1\\1-x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
a) \(\sqrt{x-3}=5\) (1)
ĐKXĐ: \(x\ge3\)
\(\left(1\right)\Leftrightarrow x-3=25\)
\(\Leftrightarrow x=28\) (nhận)
Vậy \(x=28\)
b) \(\sqrt{2x-1}=\sqrt{3}\) (2)
ĐKXĐ: \(x\ge\dfrac{1}{2}\)
\(\left(2\right)\Leftrightarrow2x-1=3\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\) (nhận)
Vậy \(x=2\)
c) \(\sqrt{1-x}=-1\)
Không tìm được \(x\) vì \(\sqrt{1-x}\ge0\) (với mọi \(x\le1\))
d) \(\sqrt{\left(x-1\right)^2}=1\) (3)
ĐKXĐ: Với mọi \(x\in R\)
\(\left(3\right)\Leftrightarrow\left|x-1\right|=1\)
\(\Leftrightarrow x-1=1\) (khi \(x\ge1\)) hoặc \(1-x=1\) (khi \(x< 1\))
* \(x-1=1\)
\(\Leftrightarrow x=2\) (nhận)
* \(1-x=1\)
\(\Leftrightarrow x=0\) (nhận)
Vậy \(x=0;x=2\)
tìm x biết:
a \(\sqrt{\left(x+1\right)^2}\) = 5
b, 5\(\sqrt{x-9}\) - \(\sqrt{4\left(x-1\right)}\) + \(\sqrt{36\left(x-1\right)}\) -18 = 0
a: \(\sqrt{\left(x+1\right)^2}=5\)(ĐKXĐ: \(x\in R\))
=>|x+1|=5
=>\(\left[{}\begin{matrix}x+1=5\\x+1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=-6\left(nhận\right)\end{matrix}\right.\)
b: Sửa đề: \(5\sqrt{9x-9}-\sqrt{4\left(x-1\right)}+\sqrt{36\left(x-1\right)}-18=0\)
ĐKXĐ: x>=1
\(PT\Leftrightarrow5\cdot3\sqrt{x-1}-2\sqrt{x-1}+6\sqrt{x-1}-18=0\)
=>\(15\sqrt{x-1}-2\sqrt{x-1}+6\sqrt{x-1}=18\)
=>\(19\sqrt{x-1}=18\)
=>\(\sqrt{x-1}=\dfrac{18}{19}\)
=>\(x-1=\left(\dfrac{18}{19}\right)^2=\dfrac{324}{361}\)
=>\(x=\dfrac{324}{361}+1=\dfrac{324+361}{361}=\dfrac{685}{361}\)
Lời giải:
a. PT $\Leftrightarrow |x+1|=5$
$\Leftrightarrow x+1=\pm 5\Leftrightarrow x=4$ hoặc $x=-6$
b. ** Sửa $x-9$ thành $x-1$
ĐKXĐ: $x\geq 1$
PT $\Leftrightarrow 5\sqrt{x-1}-2\sqrt{x-1}+6\sqrt{x-1}-18=0$
$\Leftrightarrow (5-2+6)\sqrt{x-1}=18$
$\Leftrightarrow 9\sqrt{x-1}=18$
$\Leftrightarrow \sqrt{x-1}=2$
$\Leftrightarrow x-1=4$
$\Leftrightarrow x=5$ (tm)
Tìm x biết:
a, \(\sqrt{x-1}\) = 3 b,\(x^2\) - 64 = 0
c,\(x^2\) + 16 = 25 d,|\(\sqrt{x}-3\)| + 3 = 9
a, ĐKXĐ:\(x\ge1\)
\(\sqrt{x-1}=3\\ \Rightarrow x-1=9\\ \Rightarrow x=10\)
\(b,x^2-64=0\\ \Rightarrow\left(x-8\right)\left(x+8\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\\ c,x^2+16=25\\ \Rightarrow x^2=9\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\\ d,ĐKXĐ:x\ge0\\ \left|\sqrt{x}-3\right|+3=9\\ \Rightarrow\left|\sqrt{x}-3\right|=6\\ \Rightarrow\left[{}\begin{matrix}\sqrt{x}-3=-6\\x-3=6\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\sqrt{x}=-3\left(vô.lí\right)\\x=9\left(tm\right)\end{matrix}\right.\)
bài 2 Tìm x không âm, biết:
a)\(\sqrt{x}\) < \(\sqrt{3}\)
b) \(\sqrt{3x}\) < 6
c)\(\dfrac{1}{2}\)\(\sqrt{5x}\) <10
a) \(\sqrt{x}< \sqrt{3}\Rightarrow x< 3\Rightarrow0\le x< 3\)
b) \(\sqrt{3x}< 6\Rightarrow3x< 36\Rightarrow x< 12\Rightarrow0\le x< 12\)
c) \(\dfrac{1}{2}\sqrt{5x}< 10\Rightarrow\sqrt{5x}< 20\Rightarrow5x< 400\Rightarrow x< 80\Rightarrow0\le x< 80\)
a) \(0\le x< 3\)
b) \(0\le x< 12\)