Chứng tỏ biểu thức sau luôn dương với mọi số thực x,y: M= 5x2+2y2+4xy-2x+4y+6
Chứng tỏ rằng giá trị của biểu thức sau luôn dương với mọi x,y
\(A=2x^2-4xy-12y+7x+4y^2+10\)
Lời giải:
Ta có:
\(A=2x^2-4xy-12y+7x+4y^2+10\)
\(=(x^2-4xy+4y^2)+x^2-12y+7x+10\)
\(=(x-2y)^2+6(x-2y)+9+x^2+x+1\)
\(=(x-2y+3)^2+(x+\frac{1}{2})^2+\frac{3}{4}\)
Vì \((x-2y+3)^2\geq 0; (x+\frac{1}{2})^2\geq 0, \forall x,y\)
\(\Rightarrow A\geq 0+0+\frac{3}{4}>0, \forall x,y\)
Vậy $A$ luôn nhận giá trị dương với mọi $x,y$
Chứng minh rằng biểu thức sau luôn luôn dương với mọi x,y
B=x2-2x+y2+4y+6
\(B=x^2-2x+y^2+4y+6=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
\(B=x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
cho hình thang cân , đáy nhỏ AB đáy lớn CD . Góc nhọn hợp từ hai đường chéo AC và BD bằng \(60^o\)gọi M,N là hình chiếu của B và C lên AC và BD , p là trung điểm cạnh BC . Cm tam giác MNP là tam giác đều
Chứng minh rằng biểu thức sau luôn dương với mọi giá trị của biến: x2+y2-2x-4y+6
\(\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)
\(=\left(x-1\right)^2\) + (y-2)^2 + 1
Xét nữa là xong
Chứng minh rằng các biểu thức sau luôn có giá trị dương với mọi giá trị của biến
x^2-8x+20
4x^2-12x+11
x^2-x+1
x^2-2x+y^2+4y+6
x^2-8x+20=(x^2-8x+16)+4
=(x-4)^2+4>0(vì (x-4)^2>=0)
4x^2-12x+11=4x^2-12x+9+2
=(2x-3)^2+2>0
x^2-x+1=x^2-x+1/4+3/4
=(x-1/2)^2+3/4>0
x^2-2x+y^2+4y+6
=x^2-2x+1+y^2+4y+4+1
=(x-1)^2+(y+2)^2+1>0
a: \(x^2-8x+20\)
\(=x^2-8x+16+4\)
\(=\left(x-4\right)^2+4>0\forall x\)
b: Ta có: \(4x^2-12x+11\)
\(=4x^2-12x+9+2\)
\(=\left(2x-3\right)^2+2>0\forall x\)
c: Ta có: \(x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
d: Ta có: \(x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\forall x,y\)
CMR biểu thức sau luôn nhận gt dương với mọi giá trị của x và y:
Q=5x2+2y2+4xy-2x+4y+2009
\(Q=5x^2+2y^2+4xy+2x+4y+2009\)
\(Q=\left(4x^2+4xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+4y+4\right)+2004\)
\(Q=\left(2x+y\right)^2+\left(x+1\right)^2+\left(y+2\right)^2+2004>0\) với \(\forall x\)
chu vi hình chữ nhật là 4/5 . chiều rộng bang 4/5 chiềudài . tính diẹn tích hình chữ nhật đó
Bạn viết đa thức trên thành đa thức biến x rồi tìm min của đa thức bậc 2 như bình thường.
Lưu ý rằng trong tam thức bậc 2: \(f\left(x\right)=ax^2+bx+c\)
Nếu mình nhớ không lầm thì nó đạt cực trị khi \(x=-\frac{b}{2a}\)
tìm GTNN của biểu thức A=5x2+2y2-4xy-8x-4y+19
A=5x2+2y2−4xy−8x−4y+19=(2x2−4xy+2y2)+4(x−y)+(3x2−12x)+19=2(x−y)2+4(x−y)+3(x2−4x+4)+7=2[(x−y)2+2(x−y)+1]+3(x−2)2+5=2(x−y+1)2+3(x−2)2+5≥0Dấu "=" xảy ra khi{x−y+1=0x−2=0↔{x=2y=x+1=3VậyMinA=5↔{x=2y=3
mik viết 5x2 là 5x mũ 2 nha
Câu 9: Chứng tỏ với mọi giá trị x,y thuộc Q thì giá trị của biểu thức sau luôn luôn là số dương :
M=3[x2+1]+x2y2+y2-2 / [x+y]2+5
Câu10:Tìm cặp số nuyên dương x;y để biểu thức sau có giá trị dương
A=2x+2y-3 / x+y
chứng tỏ rằng các biểu thức sau luôn âm (hoặc luôn dương) với mọi giá trị của chữ đã cho
1) x2+x+2
2) -a2+a-3
3) 2x2-x+1
4) -m2+3m-4
5) -3x2+2x-7
6) \(\frac{3x^2-x+1}{-4x^2+2x-1}\)
7) \(\frac{-3x^2+7x-8}{5x^2-3x+12}\)
8) x2+5y2+4xy-6x-16y+16
9) -5x2-4y2+4xy+12x-4y-12
Bài 1: Tìm gtln của các bth
a)A= -x^2 – 4x -2
b)B= -2x^2 – 3x +5
c)C= (2-x)(x + 4)
d)D= -8x^2 + 4xy – y^2 +3
Bài 2:CMR: Giá trị của các biểu thức sau luôn dương với mọi giá trị của biến
a)A=25x^2 – 20x + 7
b)B=9x^2 – 6xy + 2y^2 + 1
c)E=x^2 – 2x + y^2 – 4y +6
Bài 1:
a) Ta có: \(A=-x^2-4x-2\)
\(=-\left(x^2+4x+2\right)\)
\(=-\left(x^2+4x+4-2\right)\)
\(=-\left(x+2\right)^2+2\le2\forall x\)
Dấu '=' xảy ra khi x=-2
b) Ta có: \(B=-2x^2-3x+5\)
\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)
\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)
\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{4}\)
c) Ta có: \(C=\left(2-x\right)\left(x+4\right)\)
\(=2x+8-x^2-4x\)
\(=-x^2-2x+8\)
\(=-\left(x^2+2x-8\right)\)
\(=-\left(x^2+2x+1-9\right)\)
\(=-\left(x+1\right)^2+9\le9\forall x\)
Dấu '=' xảy ra khi x=-1
Bài 2:
a) Ta có: \(=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)
b) Ta có: \(B=9x^2-6xy+2y^2+1\)
\(=9x^2-6xy+y^2+y^2+1\)
\(=\left(3x-y\right)^2+y^2+1>0\forall x,y\)
c) Ta có: \(E=x^2-2x+y^2-4y+6\)
\(=x^2-2x+1+y^2-4y+4+1\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\forall x,y\)