Chứng minh:
\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2=1\) với \(a\ge0,a\ne1\)
Với \(a\ge0,a\ne1\), chứng minh \(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2=1\)
\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\cdot\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\left(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\cdot\left(\dfrac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\)
\(=\left(1+\sqrt{a}+a+\sqrt{a}\right)\cdot\left(\dfrac{1}{1+\sqrt{a}}\right)^2\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)^2}=1\)
Chứng minh các đẳng thức sau:
a) \(\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)=1-x\)
(Với \(x\ge0;x\ne1\))
b) \(\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}+\dfrac{a-b}{\sqrt{a}-b}=2\sqrt{a}\)
(Với a>0; b>0; \(a\ne b\))
Câu b bạn sửa lại đề
\(a,VT=\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\\ =\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x=VP\\ b,VT=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}+\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\\ =\sqrt{a}-\sqrt{b}+\sqrt{a}+\sqrt{b}=2\sqrt{a}=VP\)
a: \(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)
Chứng minh:
\(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)=1-a\) với \(a\ge0,a\ne1\)
Qua đây tham khảo nè bạn: https://loigiaihay.com/bai-75-trang-40-sgk-toan-9-tap-1-c44a26987.html
\(\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)=1-a\)
\(=[1+\frac{\sqrt{a}.\left(\sqrt{a}+1\right)}{\sqrt{a+1}}].[1-\frac{\sqrt{a}.\left(\sqrt{a}-1\right)}{\sqrt{a}-1}]\)
\(=\left(1+\sqrt{a}\right).\left(1-\sqrt{a}\right)\)
\(=1-a\)
Chứng minh đẳng thức:
a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\sqrt{xy}\left(x\ge0,y\ge0,x^2+y^2\ne0\right)\)
b) \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\left(a\ge0,a\ne1\right)\)
c) \(\sqrt{x+2\sqrt{x-2}-1}\left(\sqrt{x-2}-1\right):\left(\sqrt{x}-\sqrt{3}\right)=\sqrt{x}+\sqrt{3}\left(x\ge2,x\ne3\right)\)
a: \(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)
b: \(=\dfrac{1+\sqrt{a}}{a-\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
Cho biểu thức A = \(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right)\):\(\dfrac{\sqrt{x}-1}{2}\) (\(x\ge0\); \(x\ne1\)). Chứng minh rằng \(A>0\)
\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{2}{x+\sqrt{x}+1}\)
Câu 1:
Q= \(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\left(a\ge0,a\ne4,a\ne1\right)\)
a) Rút gon Q
b) Tìm giá trị của a để Q dương
Caau2:
B= \(\left(\dfrac{2x+1}{\sqrt{x^3}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\left(x\ge0,x\ne1\right)\)
a) rút gon B
Câu 1:
a: \(Q=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
b: Để Q>0 thì \(\sqrt{a}-2>0\)
=>a>4
\(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\left(x\ge0;x\ne1\right)\)
Max A = ?
Lời giải:
A có min thôi bạn nhé.
\(A=\frac{\sqrt{x}+1+\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+1)}: \frac{\sqrt{x}-(\sqrt{x}-1)}{\sqrt{x}-1}\)
\(=\frac{2\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}:\frac{1}{\sqrt{x}-1}=\frac{2\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}.(\sqrt{x}-1)=\frac{2\sqrt{x}+1}{\sqrt{x}+1}\)
\(=\frac{2(\sqrt{x}+1)-1}{\sqrt{x}+1}=2-\frac{1}{\sqrt{x}+1}\)
Vì $\sqrt{x}\geq 0$ với mọi $x\geq 0; x\neq 1$ nên $\sqrt{x}+1\geq 1$
$\Rightarrow \frac{1}{\sqrt{x}+1}\leq 1$
$\Rightarrow A=2-\frac{1}{\sqrt{x}+1}\geq 2-1=1$
Vậy $A_{\min}=1$ tại $x=0$
Chứng minh các đẳng thức sau :
a) \(\left(\dfrac{1-a\sqrt{a}}{a-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2=1\) với \(a\ge0;a\ne1\)
b) \(\dfrac{a+b}{b^2}\sqrt{\dfrac{a^2b^4}{a^2+2ab+b^2}}=\left|a\right|\) với \(a+b>0;b\ne0\)
Chứng minh các đẳng thức sau :
a) \(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{6}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
b) \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}=-2\)
c) \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}=a-b\) với a, b dương và \(a\ne b\)
d) \(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)=1-a\) với \(a\ge0\) và \(a\ne1\)