chứng minh \(a+\dfrac{b^2}{2}+\dfrac{c^3}{3}\ge\dfrac{11}{6}\) với a,b,c khác 0,abc=1
Cho a,b,c >0 Chứng minh rằng:
a) \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{a+b+c}{\sqrt[3]{abc}}\)
b) \(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
Cho a, b, c > 0 và abc = 1. Chứng minh rằng \(\dfrac{1}{a^2.\left(b+c\right)}+\dfrac{1}{b^2.\left(c+a\right)}+\dfrac{1}{c^2.\left(a+b\right)}\ge\dfrac{3}{2}\)
Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) khi đó thu được \(xyz=1\)
Ta có:
\(\dfrac{1}{a^2\left(b+c\right)}=\dfrac{x^2}{\dfrac{1}{y}+\dfrac{1}{z}}=\dfrac{x^2yz}{y+z}=\dfrac{x}{y+z}\)
BĐT cần chứng minh được viết lại thành:\(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\left(\dfrac{x}{y+z}+1\right)+\left(\dfrac{y}{z+x}+1\right)+\left(\dfrac{z}{x+y}+1\right)\ge\dfrac{9}{2}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\dfrac{1}{y+z}+\dfrac{1}{z+x}+\dfrac{1}{x+y}\right)\ge\dfrac{9}{2}\)
Đánh giá cuối cùng đúng theo BĐT Cauchy
Vậy BĐT được chứng minh. Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.
1. Chứng minh: \(a^6+b^6+c^6\ge a^5b+ac^5+b^5c\) với \(a,b,c\ge0\)
2. Chứng minh rằng: với a,b,c > 0 thì \(\dfrac{a^2}{b^2+c^2}+\dfrac{b^2}{a^2+c^2}+\dfrac{c^2}{a^2+b^2}\ge\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\)
3. Chứng minh rằng: \(8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3\) với a,b,c > 0.
4. Cho a,b,c là độ dài 3 cạnh của tam giác. Chứng minh: \(\dfrac{1}{a+b};\dfrac{1}{a+c};\dfrac{1}{b+c}\) là độ dài của tam giác.
@Ace Legona @Akai Haruma
3) Biến đổi tương đương:
\(8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(a+c\right)^3\) (1)
\(\Leftrightarrow\left(a^3+b^3\right)+\left(b^3+c^3\right)+\left(a^3+c^3\right)+6\left(a^3+c^3+b^3\right)\)
\(\ge\left(a^3+b^3\right)+\left(b^3+c^3\right)+\left(a^3+c^3\right)+3ab\left(a+b\right)+3bc\left(b+c\right)+3ac\left(a+c\right)\)
\(\Leftrightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)\)
\(\Leftrightarrow\left[a^3+b^3-ab\left(a+b\right)\right]+\left[a^3+c^3-ac\left(a+c\right)\right]+\left[b^3+c^3-bc\left(b+c\right)\right]\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2+\left(a+c\right)\left(a-c\right)^2+\left(b+c\right)\left(b-c\right)^2\ge0\) luôn đúng do a, b, c > 0
=> (1) đúng
Dấu "=" xảy ra khi a = b = c
4) Ta có: a+b>c ; b+c>a; a+c>b
Xét \(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)
Tương tự: \(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c}\)
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)
Vậy suy ra được điều phải chứng minh
2) Xét: \(\dfrac{a^2}{b^2+c^2}-\dfrac{a}{b+c}=\dfrac{a\left(ab+ac-b^2-c^2\right)}{\left(b^2+c^2\right)\left(b+c\right)}=\dfrac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b^2+c^2\right)\left(b+c\right)}\left(1\right)\)
Tương tự:
\(\dfrac{b^2}{c^2+a^2}-\dfrac{b}{c+a}=\dfrac{bc\left(b-c\right)+ba\left(b-a\right)}{\left(c^2+a^2\right)\left(c+a\right)}\left(2\right)\)
\(\dfrac{c^2}{a^2+b^2}-\dfrac{c}{a+b}=\dfrac{ca\left(c-a\right)+cb\left(c-b\right)}{\left(c^2+a^2\right)\left(c+a\right)}\left(3\right)\)
Cộng (1),(2),(3) vế theo vế ta được:
\(\left(\dfrac{a^2}{b^2+c^2}+\dfrac{b^2}{c^2+a^2}+\dfrac{c^2}{a^2+b^2}\right)-\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)\)
\(=ab\left(a-b\right)\left[\dfrac{1}{\left(b^2+c^2\right)\left(b+c\right)}-\dfrac{1}{\left(a^2+c^2\right)\left(a+c\right)}\right]+ac\left(a-c\right)\left[\dfrac{1}{b^2+c^2\left(b+c\right)}-\dfrac{1}{\left(a^2+b^2\right)\left(a+b\right)}\right]+bc\left(b-c\right)\left[\dfrac{1}{\left(a^2+c^2\right)\left(a+c\right)}-\dfrac{1}{\left(a^2+b^2\right)\left(a+b\right)}\right]\)
Giả sử \(a\ge b\ge c>0\) thì các biểu thức trong ngoặc tròn, vuông không âm
=> đpcm
Cho a,b,c > 0 . Chứng minh \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{\sqrt{3\left(a^2+b^2+c^2\right)}}{\sqrt[3]{abc}}\)
Cho a,b,c > 0 chứng minh \(\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{c^2}{a^3}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
áp dụng bdt côsi \(\dfrac{a^2}{b^3}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{3}{b}\)
tuông tu \(\dfrac{b^2}{c^3}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{3}{c}\)
\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{3}{a}\)
suy ra vt +\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
suy ra dpcm
dau = xay ra khi a=b=c
Cho \(a,b,c>0\) thỏa mãn \(a^4+b^4+c^4=3\). Chứng minh:
\(\dfrac{a^2}{b^3+1}+\dfrac{b^2}{c^3+1}+\dfrac{c^2}{a^3+1}\ge\dfrac{3}{2}\)
Cho a,b,c>0. Chứng minh rằng: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{\sqrt[3]{abc}}{a+b+c}\ge\dfrac{10}{3}\)
Từ bài toán này (mà bạn đã hỏi cách đây vài bữa):
cho a,b,c>0. Chứng minh rằng: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{a+b+c}{\sqrt[3]{abc}}\) - Hoc24
Ta có: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{a+b+c}{\sqrt[3]{abc}}\)
Do đó: \(VT\ge\dfrac{a+b+c}{\sqrt[3]{abc}}+\dfrac{\sqrt[3]{abc}}{a+b+c}\)
Lại có: \(\dfrac{a+b+c}{\sqrt[3]{abc}}\ge\dfrac{3\sqrt[3]{abc}}{\sqrt[3]{abc}}=3\)
Đặt \(\dfrac{a+b+c}{\sqrt[3]{abc}}=x\ge3\Rightarrow VT\ge x+\dfrac{1}{x}=\dfrac{x}{9}+\dfrac{1}{x}+\dfrac{8x}{9}\ge2\sqrt{\dfrac{x}{9x}}+\dfrac{8}{9}.3=\dfrac{10}{3}\) (đpcm)
chứng minh bất đẳng thức
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\ge\dfrac{3}{2}\)với a ≥ b ≥ c > 0
Ta có: BĐT\(\Leftrightarrow\dfrac{a}{a+b}-\dfrac{1}{2}+\dfrac{b}{b+c}-\dfrac{1}{2}+\dfrac{c}{c+a}-\dfrac{1}{2}\ge0\)
\(\Leftrightarrow\dfrac{2a-\left(a+b\right)}{2\left(a+b\right)}+\dfrac{2b-\left(b+c\right)}{2\left(b+c\right)}+\dfrac{2c-\left(c+a\right)}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2\left(a+b\right)}+\dfrac{b-c}{2\left(b+c\right)}+\dfrac{c-a}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2\left(a+b\right)}+\dfrac{b-a+a-c}{2\left(b+c\right)}+\dfrac{c-a}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2}\left(\dfrac{1}{a+b}-\dfrac{1}{b+c}\right)+\dfrac{a-c}{2}\left(\dfrac{1}{b+c}-\dfrac{1}{c+a}\right)\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2}\left(\dfrac{c-a}{\left(a+b\right)\left(b+c\right)}+\dfrac{a-c}{\left(b+c\right)\left(c+a\right)}\right)\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\) (đúng)
Vậy BĐT luôn đúng với \(a\ge b\ge c>0\)
Chứng minh rằng:
\(\dfrac{a^{11}}{bc}+\dfrac{b^{11}}{ca}+\dfrac{c^{11}}{ab}\ge\dfrac{a^6+b^6+c^6+9}{2}\)