HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho x, y, z là các số thực dương thỏa mãn: xyz = 1. Tìm giá trị nhỏ nhất của
biểu thức A =\(\dfrac{1}{x+y+z}-\dfrac{2}{xy+yz+zx}\)
Cho 2016 số nguyên dương \(a_1;a_2;a_3;....;a_{2016}\) thỏa mãn:
\(\dfrac{1}{a_1}+\dfrac{1}{a_2}+\dfrac{1}{a_3}+...+\dfrac{1}{a_{2016}}=300\). Chứng minh rằng tồn tại ít nhất 2 số trong 2016 số đã cho bằng nhau
Cho a và b là 2 số dương thỏa mãn a\(\ge3\) ; ab\(\ge6\). Tìm giá trị nhỏ nhất của
S=\(a^2+b^2\)
Giải phương trình nghiệm nguyên: \(1+x^{ }+x^2+...+x^{2008}=y^{2008}\)
Giair phương trình nghiệm nguyên dương: \(x+2y+2z=xyz\)
Tìm nghiệm nguyên của phương trình: \(x^2-2y^2=1\)
Cho a,b,c>0 thỏa mãn \(\dfrac{1}{a+b+1}+\dfrac{1}{b+c+1}+\dfrac{1}{c+a+1}\ge1\). Chứng minh rằng \(a+b+c\ge ab+bc+ca\)
Cho a,b,c>0 thỏa mãn \(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\ge1\). Chứng minh rằng:
a+b+c\(\ge\)ab+bc+ca
Cho x,y,z thỏa mãn \(x^2+y^2+z^2-2x-4y+6z\le2\). Tìm GTNN và GTLN của
\(P=x+2y-2z\)