. Với x,y,z là các số thực dương thỏa mãn\(5\left(x+y+z\right)^2\ge14\left(x^2+y^2+z^2\right)\).Tìm GTNN và GTLN của
Q=\(\dfrac{2x+z}{2z+x}\)
Cho x,y,z thỏa mãn x+y+2z=3.Tìm GTNN của biểu thức Q=2x2 - 2y2 - z2
Cho x,y,z thỏa mãn x+y+z=1
Tìm GTLN của Q=\(\sqrt{2x^2+x+1}+\sqrt{2y^2+y+1}+\sqrt{2z^2+z+1}\)
Cho x, y, z không âm thỏa mãn:
\(x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2=6\)
Tìm GTLN của biểu thức: Q=x+y+z
Cho x, y, z là các số thực không âm thỏa mãn x+y+z =1
tìm GTLN của biểu thức:
P = \(\sqrt{2x^2+x+1}+\sqrt{2y^2+y+1}+\sqrt{2z^2+z+1}\)
Tìm GTLN, GTNN của biểu thức P= x-2y+3z biết rằng x,y,z>hoặc = 0 và thỏa mãn hệ phương trình:
\(\hept{\begin{cases}2x+4y+3z=8\\3x+y-3z=2\end{cases}}\)
Luyện tập tiếp nhé?
a) Cho \(x,y,z>0\)thỏa mãn \(x+y+z=2\). Tìm GTLN của \(P=\sqrt{2x+yz}+\sqrt{2y+zx}+\sqrt{2z+xy}\)
b) Cho \(x,y,z>0\)thỏa mãn \(x+y+z=2\). Tìm GTNN của \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
c) Cho 3 số dương a,b,c thỏa mãn \(a+b+c=3\). Tìm GTNN của \(S=\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)
Cho x,y,z thuộc Z thỏa mãn \(\frac{1}{\sqrt{2x-1}}+\frac{1}{\sqrt{2y-1}}+\frac{1}{\sqrt{2z-1}}=3\).
Tìm GTLN của A=\(\frac{2x+y}{x\left(x+2y\right)}+\frac{2y+z}{y\left(y+2z\right)}+\frac{2z+x}{z\left(z+2x\right)}\)
Cho x,y,z là các số thực dương thỏa mãn điều kiện x+y+z=1. Tìm GTNN của biểu thức \(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
Cho x,y,z lớn hơn 0 thỏa mãn 13x+5y+12z=9. Tìm GTLN của biểu thức \(B=\frac{xy}{2x+y}+\frac{3yz}{2y+z}+\frac{6zx}{2z+x}\)
Giúp mk nhanh nhé mọi người ơi