Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
25 tháng 9 2023 lúc 21:48

\(\overrightarrow {MD}  + \overrightarrow {ME}  + \overrightarrow {MF}  = \left( {\overrightarrow {MO}  + \overrightarrow {OD} } \right) + \left( {\overrightarrow {MO}  + \overrightarrow {OE} } \right) + \left( {\overrightarrow {MO}  + \overrightarrow {OF} } \right)\)

Qua M kẻ các đường thẳng \({M_1}{M_2}//AB;{M_3}{M_4}//AC;{M_5}{M_6}//BC\)

Từ đó ta có: \(\widehat {M{M_1}{M_6}} = \widehat {M{M_6}{M_1}} = \widehat {M{M_4}{M_2}} = \widehat {M{M_2}{M_4}} = \widehat {M{M_3}{M_5}} = \widehat {M{M_5}{M_3}} = 60^\circ \)

Suy ra các tam giác \(\Delta M{M_3}{M_5},\Delta M{M_1}{M_6},\Delta M{M_2}{M_4}\) đều

Áp dụng tính chất trung tuyến \(\overrightarrow {AM}  = \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right)\)(với là trung điểm của BC) ta có:

\(\overrightarrow {ME}  = \frac{1}{2}\left( {\overrightarrow {M{M_1}}  + \overrightarrow {M{M_6}} } \right);\overrightarrow {MD}  = \frac{1}{2}\left( {\overrightarrow {M{M_2}}  + \overrightarrow {M{M_4}} } \right);\overrightarrow {MF}  = \frac{1}{2}\left( {\overrightarrow {M{M_3}}  + \overrightarrow {M{M_5}} } \right)\)

\( \Rightarrow \overrightarrow {MD}  + \overrightarrow {ME}  + \overrightarrow {MF}  = \frac{1}{2}\left( {\overrightarrow {M{M_2}}  + \overrightarrow {M{M_4}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_1}}  + \overrightarrow {M{M_6}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_3}}  + \overrightarrow {M{M_5}} } \right)\)

Ta có: các tứ giác \(A{M_3}M{M_1};C{M_4}M{M_6};B{M_2}M{M_5}\) là hình bình hành

Áp dụng quy tắc hình bình hành ta có

\(\overrightarrow {MD}  + \overrightarrow {ME}  + \overrightarrow {MF}  = \frac{1}{2}\left( {\overrightarrow {M{M_2}}  + \overrightarrow {M{M_4}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_1}}  + \overrightarrow {M{M_6}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_3}}  + \overrightarrow {M{M_5}} } \right)\)

\( = \frac{1}{2}\left( {\overrightarrow {M{M_1}}  + \overrightarrow {M{M_3}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_2}}  + \overrightarrow {M{M_5}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_4}}  + \overrightarrow {M{M_6}} } \right)\)

\( = \frac{1}{2}\overrightarrow {MA}  + \frac{1}{2}\overrightarrow {MB}  + \frac{1}{2}\overrightarrow {MC}  = \frac{1}{2}\left( {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC} } \right)\)

\( = \frac{1}{2}\left( {\left( {\overrightarrow {MO}  + \overrightarrow {OA} } \right) + \left( {\overrightarrow {MO}  + \overrightarrow {OB} } \right) + \left( {\overrightarrow {MO}  + \overrightarrow {OC} } \right)} \right)\)

\( = \frac{1}{2}\left( {3\overrightarrow {MO}  + \left( {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC} } \right)} \right) = \frac{3}{2}\overrightarrow {MO} \) (đpcm)

Vậy \(\overrightarrow {MD}  + \overrightarrow {ME}  + \overrightarrow {MF}  = \frac{3}{2}\overrightarrow {MO} \)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 8 2018 lúc 9:48

Giải bài 9 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Ta có:

Giải bài 9 trang 17 sgk Hình học 10 | Để học tốt Toán 10

⇒ ΔMHS đều.

MD ⊥ SH nên MD là đường cao đồng thời là trung tuyến của ΔMHS.

⇒ D là trung điểm của HS

Giải bài 9 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Chứng minh tương tự ta có:

Giải bài 9 trang 17 sgk Hình học 10 | Để học tốt Toán 10

(Vì các tứ giác BSMP, HMQC, MRAG là hình bình hành)

Giải bài 9 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Sách Giáo Khoa
Xem chi tiết
Kẹo dẻo
30 tháng 3 2017 lúc 12:57

Qua M kẻ các đường thẳng song song với các cạnh của tam giác

A1B1 // AB; A2C2 // AC; B2C1 // BC.

Dễ thấy các tam giác MB1C2; MA1C1;MA2B2 đều là các tam giác đều. Ta lại có MD B1C2 nên MD cũng là trung điểm thuộc cạnh B1C2 của tam giác MB1C2

Ta có 2 = +

Tương tự: 2 = +

2 = +

=> 2( ++) = (+) + ( + ) + (+)

Tứ giác là hình bình hành nên

+ =

Tương tự: + =

+ =

=> 2( ++) = ++

vì O là trọng tâm bất kì của tam giác và M là một điểm bất kì nên

++ = 3.

Cuối cùng ta có:

2( ++) = 3;

=> ++ =

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
19 tháng 5 2017 lúc 14:32

Vectơ

Trần Thanh
Xem chi tiết
Hồ Quốc Khánh
Xem chi tiết
Kinder
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 11 2017 lúc 7:06

c)

  K ẻ   B N ⊥ A C N ∈ A C .   B A C ⏜ = 60 0 ⇒ A B N ⏜ = 30 0 ⇒ A N = A B 2 = c 2 ⇒ B N 2 = A B 2 − A N 2 = 3 c 2 4 ⇒ B C 2 = B N 2 + C N 2 = 3 c 2 4 + b − c 2 2 = b 2 + c 2 − b c ⇒ B C = b 2 + c 2 − b c

Gọi O là tâm đường tròn ngoại tiếp tam giác ABC, R là bán kính đường tròn ngoại tiếp tam giác ABC. Xét tam giác đều BCE có  R = O E = 2 3 E M = 2 B C 3 3.2 = 1 3 . 3 b 2 + c 2 − b c

Trần Minh Thành
Xem chi tiết
Phương
Xem chi tiết