§3. Tích của vectơ với một số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho tam giác đều ABC có O là trọng tâm và M là một điểm tùy ý trong tam giác. Gọi D, E, F lần lượt là chân đường vuông góc hạ từ M đền BC, AC, AB. Chứng minh rằng :

                \(\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF}=\dfrac{3}{2}\overrightarrow{MO}\)

Kẹo dẻo
30 tháng 3 2017 lúc 12:57

Qua M kẻ các đường thẳng song song với các cạnh của tam giác

A1B1 // AB; A2C2 // AC; B2C1 // BC.

Dễ thấy các tam giác MB1C2; MA1C1;MA2B2 đều là các tam giác đều. Ta lại có MD B1C2 nên MD cũng là trung điểm thuộc cạnh B1C2 của tam giác MB1C2

Ta có 2 = +

Tương tự: 2 = +

2 = +

=> 2( ++) = (+) + ( + ) + (+)

Tứ giác là hình bình hành nên

+ =

Tương tự: + =

+ =

=> 2( ++) = ++

vì O là trọng tâm bất kì của tam giác và M là một điểm bất kì nên

++ = 3.

Cuối cùng ta có:

2( ++) = 3;

=> ++ =


Các câu hỏi tương tự
Hồ Quốc Khánh
Xem chi tiết
Trần Thanh
Xem chi tiết
Phong Trần
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Lê Mai
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Airi chan
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết