Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Bảo Ngọc
Xem chi tiết
HT.Phong (9A5)
1 tháng 8 2023 lúc 7:05

Đặt: \(A=n^8-n^6-n^4+n^2\)

\(A=\left(n^8-n^6\right)-\left(n^4-n^2\right)\)

\(A=n^6\left(n^2-1\right)-n^2\left(n^2-1\right)\)

\(A=\left(n^2-1\right)\left(n^6-n^2\right)\)

\(A=\left(n-1\right)\left(n+1\right)n^2\left(n^4-1\right)\)

\(A=n^2\left(n-1\right)\left(n+1\right)\left[\left(n^2\right)^2-1\right]\)

\(A=n^2\left(n-1\right)\left(n+1\right)\left(n^2-1\right)\left(n^2+1\right)\)

\(A=n^2\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

\(A=n\left(n-1\right)\left(n+1\right)n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Ta có: \(n\left(n-1\right)\left(n+1\right)\) là tích của 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3 

Còn: \(\left[n\left(n-1\right)\left(n+1\right)\right]\left[n\left(n-1\right)\left(n+1\right)\right]\) sẽ chia hết cho \(3\times3=9\) 

Do n sẽ là số lẻ nên \(\left(n-1\right);\left(n+1\right)\) sẽ luôn luôn là số chẵn 

Mà: \(\left(n-1\right)\left(n+1\right)\) sẽ chia hết cho 8 vì tích của hai số chẵn liên liếp sẽ chia hết cho 8 

Còn  \(\left(n+1\right)\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\) sẽ chia hết cho \(8\cdot8\cdot2=128\) 

Ta có: 

\(\text{Ư}\text{C}LN\left(9;128\right)=1\)

Nên: A ⋮ \(9\cdot128=1152\left(dpcm\right)\)

ILoveMath
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 8 2021 lúc 10:09

\(1152=32.36\)

Đặt \(A=n^8-n^6-n^4+n^2=n^6\left(n^2-1\right)-n^2\left(n^2-1\right)\)

\(=n^2\left(n^2-1\right)\left(n^4-1\right)=n^2\left(n^2-1\right)\left(n^2-1\right)\left(n^2+1\right)\)

\(=\left[n\left(n-1\right)\left(n+1\right)\right]^2\left(n^2+1\right)\)

Do \(n\) lẻ \(\Rightarrow n=2k+1\)

\(\Rightarrow A=\left[\left(2k+1\right)\left(2k+1-1\right)\left(2k+1+1\right)\right]^2\left[\left(2k+1\right)^2+1\right]\)

\(=32\left[k\left(k+1\right)\left(2k+1\right)\right]^2.\left(2k^2+2k+1\right)\)

Do \(k\) và k+1 là 2 số tự nhiên liên tiếp \(\Rightarrow k\left(k+1\right)⋮2\) (1)

Nếu k chia hết cho 3 \(\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮3\)

Nếu k chia 3 dư 1 \(\Rightarrow2k+1⋮3\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮3\)

Nếu k chia 3 dư 2 \(\Rightarrow k+1⋮3\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮3\)

\(\Rightarrow k\left(k+1\right)\left(2k+1\right)\) luôn chia hết cho 3 (2)

(1);(2) \(\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮6\Rightarrow\left[k\left(k+1\right)\left(2k+1\right)\right]^2⋮36\)

\(\Rightarrow32\left[k\left(k+1\right)\left(2k+1\right)\right]^2⋮\left(32.36\right)\Rightarrow A⋮1152\)

Mai Thị Kiều Nhi
18 tháng 11 2021 lúc 20:42

ảnh đại diện trên google kìa

Khách vãng lai đã xóa
Hoàng Hưng Đạo
Xem chi tiết
Xích U Lan
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 5 2021 lúc 17:13

Đặt \(A=n^4-10n^2+9\)

\(n^4-n^2-9\left(n^2-1\right)=n.n\left(n-1\right)\left(n+1\right)-9\left(n^2-1\right)\)

Do \(n\left(n-1\right)\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên luôn chia hết cho 3

\(\Rightarrow A⋮3\)

Lại có: \(A=\left(n^2-1\right)\left(n^2-9\right)=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Do n lẻ, đặt \(n=2k+1\)

\(\Rightarrow A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)

\(=2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k-1\right)\left(k+1\right)\left(k+2\right)\) là tích 4 số nguyên liên tiếp nên luôn chia hết cho 8

\(\Rightarrow A⋮\left(16.8\right)\Rightarrow A⋮128\)

Mà 3 và 128 nguyên tố cùng nhau \(\Rightarrow A⋮\left(128.3\right)\Rightarrow A⋮384\)

ChiPu6
Xem chi tiết
Trần Thanh Phương
30 tháng 9 2018 lúc 7:28

\(n^4-1\)

\(=\left(n^2\right)^2-1^2\)

\(=\left(n^2-1\right)\left(n^2+1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Vì n lẻ \(\Rightarrow\hept{\begin{cases}n-1\text{chẵn}\\n+1\text{chẵn}\\n^2+1\text{chẵn}\Rightarrow n^2+1⋮2\left(1\right)\end{cases}}\)

mặt khác n - 1 và n + 1 là 2 số chẵn liên tiếp \(\Rightarrow\left(n-1\right)\left(n+1\right)⋮4\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮8\left(đpcm\right)\)

♥➴Hận đời FA➴♥
30 tháng 9 2018 lúc 7:33

Phân tích thành nhân tử:

\(n^4-1=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Vì n là số tự nhiên lẻ nên n = 2k + 1 với k là số tự nhiên

Khi đó:

 \(n^4-1=\left(2k-1+1\right)\left(2k+1+1\right)\left(n^2+1\right)\)

\(=2k\left(2k+2\right)\left(n^2+1\right)\)

\(=2k.2.\left(k+1\right)\left(n^2+1\right)\)

\(=4k\left(k+1\right)\left(n^2+1\right)\)

Vì k(k+1) là tích hay số tự nhiên liên tiếp nên k(k+1) chia hết cho 2  \(\Rightarrow4k\left(k+1\right)⋮8\)

                                                                                                            \(\Rightarrow4k\left(k+1\right)\left(n^2+1\right)⋮8\)

                                                                                                     hay  \(n^4-1⋮8\)(với n là số tự nhiên lẻ)

Ta có điều phải chứng minh.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 7 2017 lúc 10:25

a) Phân tích  15 n   + 15 n + 2 = 113.2. 15 n .

b) Phân tích  n 4   –   n 2 = n 2 (n - 1)(n +1).

Nguyên Lê
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 9 2021 lúc 16:24

a. 

Đề bài sai, ví dụ \(n=1\) lẻ nhưng  \(1^2+4.1+8=13\) ko chia hết cho 8

b.

n lẻ \(\Rightarrow n=2k+1\)

\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48

Phạm Quang Vũ
Xem chi tiết
TRẦN ĐỨC VINH
13 tháng 5 2019 lúc 17:06

\(M=n^6-n^4-n^2+1=n^4\left(n^2-1\right)-\left(n^2-1\right)=\left(n^2-1\right)\left(n^4-1\right)=\left(n^2-1\right)^2\left(n^2+1\right)=\) 

         \(=\left(n-1\right)^2\left(n+1\right)^2\left(n^2+1\right)\) Theo giae thiết n = 2t + 1 (Là số tự nhiên lẻ) với t là số tự nhiên. Do đó: 

\(M=\left(2t+1-1\right)^2\left(2t+1+1\right)^2.[\left(2t+1\right)^2+1]=4t^2.4\left(t+1\right)^2.[4t^2+4t+2].\) 

\(M=32.[t\left(t+1\right)]^2.[2t^2+2t+1]\)  Ta có  t(t + 1) là số chẵn  (Là tích hai số tự nhiên liên tiếp) bình phương của số đó chia hết cho 4 cho nên M chia hết cho 128       ( 128 =  32 x 4).

Nguyễn Thị Kim Anh
Xem chi tiết
Phùng Quang Thịnh
29 tháng 5 2017 lúc 5:59

+)Vì n là 1 số tự nhiên lẻ
=) \(24^n\)có chữ số tận cùng là 24
=) \(24^n+1\)có chữ số tận cùng là 25\(⋮25\)( Vì số chia hết 25 là số có chữ số tận cùng là 25 ) \(\left(1\right)\)
+) Vì \(24:23\left(dư1\right)\)=) \(24^n:23\left(dư1\right)\)=) \(24^n+1:23\left(dư2\right)\)
=) \(24^n+1\)không chia hết 23 \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)=) \(24^n+1⋮25\)nhưng không chia hết cho 23 (với n là 1 số tự nhiên lẻ)

Songoku Sky Fc11
29 tháng 5 2017 lúc 6:55

vì N là 1 số tự nhiên lẻ

\(\Rightarrow24^n\)có chử số tận cùng là 24

\(\Rightarrow24^n+1\) có chữ số tận cùng là\(25⋮25\)

bởi vì 24:23 dư 1 = \(24^n\div23\left(d\text{ư1}\right)\Rightarrow24+1.23\left(d\text{ư2}\right)\)