Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ILoveMath

CMR: 

n8-n6-n4+n2⋮1152 (n lẻ)

Nguyễn Việt Lâm
3 tháng 8 2021 lúc 10:09

\(1152=32.36\)

Đặt \(A=n^8-n^6-n^4+n^2=n^6\left(n^2-1\right)-n^2\left(n^2-1\right)\)

\(=n^2\left(n^2-1\right)\left(n^4-1\right)=n^2\left(n^2-1\right)\left(n^2-1\right)\left(n^2+1\right)\)

\(=\left[n\left(n-1\right)\left(n+1\right)\right]^2\left(n^2+1\right)\)

Do \(n\) lẻ \(\Rightarrow n=2k+1\)

\(\Rightarrow A=\left[\left(2k+1\right)\left(2k+1-1\right)\left(2k+1+1\right)\right]^2\left[\left(2k+1\right)^2+1\right]\)

\(=32\left[k\left(k+1\right)\left(2k+1\right)\right]^2.\left(2k^2+2k+1\right)\)

Do \(k\) và k+1 là 2 số tự nhiên liên tiếp \(\Rightarrow k\left(k+1\right)⋮2\) (1)

Nếu k chia hết cho 3 \(\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮3\)

Nếu k chia 3 dư 1 \(\Rightarrow2k+1⋮3\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮3\)

Nếu k chia 3 dư 2 \(\Rightarrow k+1⋮3\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮3\)

\(\Rightarrow k\left(k+1\right)\left(2k+1\right)\) luôn chia hết cho 3 (2)

(1);(2) \(\Rightarrow k\left(k+1\right)\left(2k+1\right)⋮6\Rightarrow\left[k\left(k+1\right)\left(2k+1\right)\right]^2⋮36\)

\(\Rightarrow32\left[k\left(k+1\right)\left(2k+1\right)\right]^2⋮\left(32.36\right)\Rightarrow A⋮1152\)

Mai Thị Kiều Nhi
18 tháng 11 2021 lúc 20:42

ảnh đại diện trên google kìa

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Bảo Ngọc
Xem chi tiết
Nguyễn Mai Linh
Xem chi tiết
dao duc truong
Xem chi tiết
Nameless
Xem chi tiết
Lê Quang Bảo
Xem chi tiết
ILoveMath
Xem chi tiết
đanh khoa
Xem chi tiết
đanh khoa
Xem chi tiết
Nameless
Xem chi tiết