Cho \(\hept{\begin{cases}a_1>a_2>...>a_n>0\\1\le k\in Z\end{cases}}\)
CMR : \(a_1+\frac{1}{a_n\left(a_1-a_2\right)^k\left(a_2-a_3\right)^k...\left(a_{n-1}-a_n\right)^k}\ge\frac{\left(n-1\right)k+2}{\sqrt[\left(n-1\right)k+2]{k^{\left(n-1\right)k}}}\)
Gửi : Nguyễn Huy Thắng ( Quy nạp )
CMR : 1.2+2.3+3.4+...+n.(n+1)=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Giải :
Đặt biểu thức trên là (*)
Với n = 1 Thì (*) \(\Leftrightarrow1.2=\frac{1.2.3}{3}\) ( Đúng )
Giả sử với (*) đúng với n=K
=> (*) <=> 1.2+2.3+...+k.(k+1)=\(.\frac{k.\left(k+1\right)\left(k+2\right)}{3}\)
Ta phải chứng minh (*) cùng đúng với 2=k+1
thật vậy với n=k+1
=>(*) <=> 1.2+2.3+...+k.(k+1)+(k+1).(k+2)=\(\frac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\)
=> \(\frac{k.\left(k+1\right)\left(k+2\right)}{3}+\left(k+1\right).\left(k+2\right)=\frac{\left(k+1\right).\left(k+2\right)\left(k+3\right)}{3}\)
=> \(\frac{k}{3}+1=\frac{k+3}{3}\Leftrightarrow\frac{k}{3}+1=\frac{k}{3}+1\)( Đúng )
=> (*) đúng với n = k+1
Vậy (*) đúng với mọi n thuộc N*
Sai hay đúng vậy :)
Với k thuộc N sao CMR:
\(\frac{1}{\left(k+1\right)\sqrt{k}}< 2\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\)
Tìm các số nguyên dương n lẻ sao cho n-1 là số nguyên dương nhỏ nhất trong các số nguyên dương k thỏa mãn \(\frac{k\left(k+1\right)}{2}\)chia hết cho n
Cho Sk \(=\left(\sqrt{2}+1\right)^k\)\(+\left(\sqrt{2}-1\right)^k\) Với \(k\in N\)
Cmr : \(S_{2009}.S_{2010}-S_{4019}\)\(=2\sqrt{2}\)
Cho m,n là 2 số nguyên dương sao cho \(k=\frac{\left(m+n\right)^2}{4m\left(m-n\right)^2+4}\) là số nguyên dương. CMR k là số chính phương
\(\text{Tìm tất cả các cặp số nguyên dương }\left(k;n\right)\text{sao cho}:\)
\(k!=\left(2^n-1\right)\left(2^n-2\right)\left(2^n-4\right)...\left(2^n-2^{n-1}\right)\)
Cho n chẵn, \(n=2^k.m\)với (m,2) = 1. Cmr
\(\left(1^n+2^n+...+\left(n-1\right)^n-\frac{n}{2}\right)⋮2^k\)
Cho \(a+b\sqrt{2}+c\sqrt{3}=0\)CMR \(a=b=c=k\left(k\in N\right)\)