Chứng minh BĐT\(4\left(x^3-y^3\right)\ge\left(x-y\right)^3\) với x,y thuộc R
Chứng minh các BĐT sau:
a/ \(4\left(x^3-y^3\right)\ge\left(x-y\right)^3\)
b/ \(x^3-3x+4\ge y^3-3y\)
Chứng minh các bất đẳng thức sau với x, y, z > 0
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)
c) \(x^4+y^4\ge\dfrac{\left(x+y\right)^4}{8}\)
e) \(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}\)
f) \(x^3+y^3+z^3\ge3xyz\)
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\left(đúng\right)\)
b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)
\(\Leftrightarrow4x^3+4y^3\ge\left(x+y\right)^3\Leftrightarrow3x^3+3y^3\ge3x^2y+3xy^2\)
\(\Leftrightarrow3x^2\left(x-y\right)-3y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow3\left(x-y\right)\left(x^2-y^2\right)\ge0\Leftrightarrow3\left(x-y\right)^2\left(x+y\right)\ge0\left(đúng\right)\)
a: Ta có: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow2x^2+2y^2-x^2-2xy-y^2\ge0\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
Chứng minh với mọi x, y \(\in R\), bất đẳng thức sau luôn đúng:
\(\left(x+y\right)^2+1-xy\ge\sqrt{3}\left(x+y\right)\)
Dễ thấy:
\(VT\ge\left(x+y\right)^2+1-\dfrac{\left(x+y\right)^2}{4}=\dfrac{3\left(x+y\right)^2}{4}+1\)
Áp dụng Cô-si:
\(\dfrac{3\left(x+y\right)^2}{4}+1\ge2\sqrt{\dfrac{3\left(x+y\right)^2}{4}.1}=\sqrt{3}\left|x+y\right|\ge\sqrt{3}\left(x+y\right)\)
Do đó:
\(\left(x+y\right)^2+1-xy\ge\sqrt{3}\left(x+y\right),\forall x,y\in R\)
Cho các số dương x,y,z . Chứng minh BĐT :
\(\frac{\left(x+1\right)\left(y+1\right)^2}{3\sqrt[3]{z^2x^2}+1}+\frac{\left(y+1\right)\left(z+1\right)^2}{3\sqrt[3]{x^2y^2}+1}+\frac{\left(z+1\right)\left(x+1\right)^2}{3\sqrt[3]{y^2z^2}+1}\ge x+y+z+3\)
ko bt lm thi đừng CMT tầm bậy nhé !
bài lớp 10 bất đẳng thức mấy chú k hiểu là đúng r -______-''
hc o nha cho đó mk dg hc chi vaxma tốc độ
ta có:(vế phải)2\(\le3\left(\frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}\right)\)
cần chứng minh:
(vế trái)2/3\(\ge\frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}\)
\(\Leftrightarrow\frac{x}{y+z}\left(\frac{x^3+\frac{1}{3}}{y+z}-x^2\right)+...\ge0\)
\(\Leftrightarrow\frac{x^2}{y+z}\left(x-y\right)\left(x-z\right)+\frac{y^2}{z+x}\left(y-x\right)\left(y-z\right)+\frac{z^2}{x+y}\left(z-x\right)\left(z-y\right)\ge0\)
bđt luôn đúng vì là bđt schur mở rộng
Chứng minh BĐT \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
giải:
-Xét hiệu 2 vế:
\(2\left(x^2+y^2\right)-\left(x+y\right)^2\)
\(=2x^2+2y^2-x^2-2xy-y^2\)
\(=x^2-2xy+y^2\)
\(=\left(x-y\right)^2\)
Xảy ra đẳng thức khi và chỉ khi x=y
-CHÚC BẠN HỌC TỐT
2(x2 + y2) \(\ge\) (x + y)2
\(\Leftrightarrow\) 2(x2 + y2) - (x + y)2 \(\ge\) 0 (Trừ cả hai vế với (x + y)2)
\(\Leftrightarrow\) 2x2 + 2y2 - x2 - 2xy - y2 \(\ge\) 0
\(\Leftrightarrow\) x2 - 2xy + y2 \(\ge\) 0
\(\Leftrightarrow\) (x - y)2 \(\ge\) 0
Vì (x - y)2 \(\ge\) 0 nên 2(x2 + y2) \(\ge\) (x + y)2
Chúc bn học tốt!!
với mọi x,y ta luôn có:
\(x^2+y^2\ge2xy\left(1\right)\)
cộng cả 2 vế bđt cho \(x^2+y^2\)
\(\left(1\right)\Leftrightarrow x^2+y^2+x^2+y^2\ge x^2+y^2+2xy\)
hay \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow\)đpcm
Chứng minh rằng với mọi số thực dương thỏa mãn xyz=1
Chứng minh rằng \(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+x\right)\left(1+z\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\frac{3}{4}\)
Em thử ạ!Em không chắc đâu.Hơi quá sức em rồi
Ta có: \(VT=\Sigma\frac{x^3}{z+y+yz+1}=\Sigma\frac{x^3}{z+y+\frac{1}{x}+1}\)
\(=\Sigma\frac{x^4}{xz+xy+1+x}=\frac{x^4}{xy+xz+x+1}+\frac{y^4}{yz+xy+y+1}+\frac{z^4}{zx+yz+z+1}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel,suy ra:
\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x+y+z\right)+2\left(xy+yz+zx\right)+3}\)
\(\ge\frac{\left(\frac{1}{3}\left(x+y+z\right)^2\right)^2}{\left(x+y+z\right)+\frac{2}{3}\left(x+y+z\right)^2+3}\) (áp dụng BĐT \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3};ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\))
Đặt \(t=x+y+z\ge3\sqrt{xyz}=3\) Dấu "=" xảy ra khi x = y = z
Ta cần chứng minh: \(\frac{\frac{t^4}{9}}{\frac{2}{3}t^2+t+3}\ge\frac{3}{4}\Leftrightarrow\frac{t^4}{9\left(\frac{2}{3}t^2+t+3\right)}=\frac{t^4}{6t^2+9t+27}\ge\frac{3}{4}\)(\(t\ge3\))
Thật vậy,BĐT tương đương với: \(4t^4\ge18t^2+27t+81\)
\(\Leftrightarrow3t^4-18t^2-27t+t^4-81\ge0\)
Ta có: \(VT\ge3t^4-18t^2-27t+3^4-81\)
\(=3t^4-18t^2-27t\).Cần chứng minh\(3t^4-18t^2-27t\ge0\Leftrightarrow3t^4\ge18t^2+27t\)
Thật vậy,chia hai vế cho \(t\ge3\),ta cần chứng minh \(3t^3\ge18t+27\Leftrightarrow3t^3-18t-27\ge0\)
\(\Leftrightarrow3\left(t^3-27\right)-18\left(t-3\right)\ge0\)
\(\Leftrightarrow\left(t-3\right)\left(3t^2+9t+27\right)-18\left(t-3\right)\ge0\)
\(\Leftrightarrow\left(t-3\right)\left(3t^2+9t+9\right)\ge0\)
BĐT hiển nhiên đúng,do \(t\ge3\) và \(3t^2+9t+9=3\left(t+\frac{3}{2}\right)^2+\frac{9}{4}\ge\frac{9}{4}>0\)
Dấu "=" xảy ra khi t = 3 tức là \(\hept{\begin{cases}x=y=z\\xyz=1\end{cases}}\Leftrightarrow x=y=z=1\)
Chứng minh hoàn tất
Em sửa chút cho bài làm ngắn gọn hơn.
Khúc chứng minh: \(4t^4\ge18t^2+27t+81\)
\(\Leftrightarrow4t^4-18t^2-27t-81\ge0\)
\(\Leftrightarrow\left(t-3\right)\left(4t^3+12t^2+18t+27\right)\ge0\)
BĐT hiển nhiên đúng do \(t\ge3\Rightarrow\hept{\begin{cases}t-3\ge0\\4t^3+12t^2+18t+27>0\end{cases}}\)
Còn khúc sau y chang :P Lúc làm rối quá nên không nghĩ ra ạ!
Áp dụng BĐT cosi ta có
\(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+z}{8}+\frac{1+y}{8}\ge\frac{3}{4}x\)
\(\frac{y^3}{\left(1+x\right)\left(1+z\right)}+\frac{1+x}{8}+\frac{1+z}{8}\ge\frac{3}{4}y\)
\(\frac{z^3}{\left(1+y\right)\left(1+x\right)}+\frac{1+y}{8}+\frac{1+x}{8}\ge\frac{3}{4}z\)
Khi đó
\(VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{1}{4}\left(x+y+z\right)-\frac{3}{4}=\frac{1}{2}\left(a+b+c\right)-\frac{3}{4}\)
Mà \(x+y+z\ge3\sqrt[3]{xyz}=3\)
=> \(VT\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)(ĐPCM)
Dấu bằng xảy ra khi x=y=z=1
Chứng minh BĐT sau với x, y, z không âm.
\(4\left(x+y+z\right)^3\ge27\left(x^2y+y^2z+z^2x+xyz\right)\)
Ô hay, em vừa tìm ra một cách chứng minh cho BĐT (2) nè:
Do x, y, z có vai trò hoán vị vòng quanh, không mất tính tổng quát giả sử \(y=min\left\{x,y,z\right\}\)
\(VT-VP=\frac{27y\left(y-z\right)^2+\left(4x+16z-11y\right)\left(y+z-2x\right)^2}{4}\ge0\)
Cái này gọi là mò:D
Cho x,y,z thuộc R thoả mãn \(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)\le\dfrac{4}{3}\)
Tìm Max P= x+y+z
( Sử dụng bđt Bunhiacopxki)