Chứng minh các bất đẳng thức sau với x, y, z > 0
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)
c) \(x^4+y^4\ge\dfrac{\left(x+y\right)^4}{8}\)
e) \(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}\)
f) \(x^3+y^3+z^3\ge3xyz\)
Chứng minh BĐT sau với x, y, z không âm.
\(4\left(x+y+z\right)^3\ge27\left(x^2y+y^2z+z^2x+xyz\right)\)
Chứng minh \(x^3+y^3\ge\frac{\left(x+y\right)^3}{4}\)với (x,y >0 )
Cho x,y,z>0. Chứng minh rằng:
\(\left(\frac{x}{x+y}\right)^2+\left(\frac{y}{y+z}\right)^2+\left(\frac{z}{z+x}\right)^2\ge\frac{3}{4}\)
chứng minh các BĐT sau:a)\(x^4-6x^3+10x^2-6x+9\ge0\) b)\(x^4-10x^3+26x^2-10x+30\ge5\)c)\(\left(x+2\right)\left(x-1\right)\left(x+3\right)\left(x+6\right)-2020\ge-2046\)
Chứng minh rằng:\(2\left(x^4+y^4\right)\ge xy^3+x^3y+2x^2y^2\)
với mọi x,y
Cho \(\left|a\right|\ge\left|b\right|\), ta có: \(\dfrac{\left|a\right|}{2009+\left|a\right|}\ge\dfrac{\left|b\right|}{2009+\left|b\right|}\)
Chứng minh rằng: \(\dfrac{\left|x\right|}{2009+\left|x\right|}+\dfrac{\left|y\right|}{2009+\left|y\right|}\ge\dfrac{\left|x-y\right|}{2009+\left|x-y\right|}\)với các số x,y bất kỳ
Cho biểu thức A= \(\frac{\left(x^2+y\right)\left(y+\frac{1}{4}\right)+x^2y^2+\frac{3}{4}\left(y+\frac{1}{3}\right)}{x^2y^2+1+\left(x^2-y\right)\left(1-y\right)}\)
a) Tìm đkxđ A
b) Chứng minh A không phụ thuộc vài x
c) Tìm GTNN của A
Chứng minh rằng với mọi \(x,y\) ta luôn có
\(\left(x,y+1\right)\left(x^2y^2-xy+1\right)+\left(x^3-1\right)\left(1-y^3\right)=x^3+y^3\)
Nhanh lên ạ giúp mình zới :>