Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thuy Linh
Xem chi tiết
Hoàng Thị Ánh Phương
7 tháng 3 2020 lúc 16:00

Ta sẽ chứng minh :

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) với x, y > 0

Thật vậy : \(x+y+z\ge3\sqrt[3]{xyz}\)( bđt Cô - si )

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{abc}}\) ( bđt Cô - si )

\(\Rightarrow x+y+z\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) ( Dấu " = " \(\Leftrightarrow x=y=z\) )

Ta có :

\(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)

( Dấu " = " xay ra khi a=b)

Tương tự ta cũng có :

\(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c}\le\frac{1}{9}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\) ( Dấu " = " xảy ra khi b=c)

\(\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\le\frac{1}{9}\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\) ( Dấu " = " xay ra khi c = a )

\(VT=\sum_{cyc}\frac{1}{\sqrt{5a^2+2ab+b^2}}\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\)

\(\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)

Dấu " = " xay ra khi \(a=b=c=\frac{2}{3}\)

Chúc bạn học tốt !!

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 3 2020 lúc 15:32

\(\frac{1}{\sqrt{4a^2+2ab+b^2+a^2+b^2}}\le\frac{1}{\sqrt{4a^2+2ab+b^2+2ab}}=\frac{1}{\sqrt{\left(2a+b\right)^2}}=\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)

\(\Rightarrow VT\le\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}+\frac{2}{b}+\frac{1}{c}+\frac{2}{c}+\frac{1}{a}\right)=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{2}{3}\)

Khách vãng lai đã xóa
Nguyễn Thu Trà
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 3 2019 lúc 21:50

\(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\dfrac{1}{\sqrt{5a^2+2ab+2b^2}}\le\dfrac{1}{\sqrt{\left(2a+b\right)^2}}=\dfrac{1}{a+a+b}\le\dfrac{1}{9}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}\right)\)

Tương tự ta có: \(\dfrac{1}{\sqrt{5b^2+2bc+2c^2}}\le\dfrac{1}{9}\left(\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\dfrac{1}{\sqrt{5c^2+2ac+a^2}}\le\dfrac{1}{9}\left(\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}\right)\)

Cộng vế với vế:

\(\dfrac{1}{\sqrt{5a^2+2ab+b^2}}+\dfrac{1}{\sqrt{5b^2+2bc+c^2}}+\dfrac{1}{\sqrt{5c^2+2ac+a^2}}\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)\le\dfrac{2}{3}\)

Dấu "=" khi \(a=b=c=\dfrac{3}{2}\)

Trương Tuấn Dũng
Xem chi tiết
Thắng Nguyễn
23 tháng 6 2016 lúc 6:41

nè Cho a, b, c là ba số thực không âm và thỏa mãn a + b + c = 1. Chứng minh rằngcăn(5a + 4) + căn(5b + 4) + căn(5c + 4) >= 7- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!

TXT Channel Funfun
Xem chi tiết
tthnew
31 tháng 10 2019 lúc 19:57

Em nghĩ cần thêm đk a, b, c là các số thực dương

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\) thì x + y + z = 3; x > 0,y>0,z>0

BĐT \(\Leftrightarrow\sqrt{\frac{5}{x}+4}+\sqrt{\frac{5}{y}+4}+\sqrt{\frac{5}{z}+4}\le3\sqrt{3\left(\frac{xy+yz+zx}{xyz}\right)}\)

\(\Leftrightarrow\sqrt{5yz+4xyz}+\sqrt{5zx+4xyz}+\sqrt{5z+4xyz}\le3\sqrt{3\left(xy+yz+zx\right)}\)(*)

\(VT\le\sqrt{5\left(xy+yz+zx\right)+12xyz+2\Sigma_{cyc}\sqrt{\left(5yz+4xyz\right)\left(5zx+4xyz\right)}}\)

\(\le\sqrt{15\left(xy+yz+zx\right)+36xyz}\)(áp dụng BĐT AM-GM)

Chú ý rằng: \(xyz\le\frac{\left(xy+yz+zx\right)\left(x+y+z\right)}{9}\)

Từ đó \(VT\le\sqrt{15\left(xy+yz+zx\right)+4\left(xy+yz+zx\right)\left(x+y+z\right)}\)

\(=3\sqrt{3\left(xy+yz+zx\right)}=VP_{\text{(*)}}\)

Ta có đpcm.

Đẳng thức xảy ra khi a = b = c = 1

Is that true?

Khách vãng lai đã xóa
Akai Haruma
31 tháng 10 2019 lúc 21:40

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:

\(3=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{9}{a+b+c}\Rightarrow a+b+c\geq 3\)

Và:

\(\text{VT}^2=(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4})^2\)

\(\leq (5a+4+5b+4+5c+4)(1+1+1)\)

\(\Leftrightarrow \text{VT}^2\leq 15(a+b+c)+36\)

Mà $3\leq a+b+c$ (cmt)

$\Rightarrow \text{VT}^2\leq 15(a+b+c)+12(a+b+c)=27(a+b+c)$

$\Rightarrow \text{VT}\leq 3\sqrt{3(a+b+c)}$

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=1$

Khách vãng lai đã xóa
Neet
Xem chi tiết
Lightning Farron
9 tháng 7 2017 lúc 22:37

nhầm source nhé :v chiều nay xem bài này r` tìm dc cái link nhưng cách này hơi bá :v

Cho $a,b,c>0$ thoả mãn $abc=1$.Chứng minh rằng: $\frac{1}{\sqrt{5a+4}}+\frac{1}{\sqrt{5b+4}}+ \frac{1}{\sqrt{5c+4}} \leq 1$ - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ giải toán

Loz Hồ
Xem chi tiết
Thị Huyền Trang Nguyễn
15 tháng 12 2017 lúc 11:22

Vì a,b,c không âm và có tổng bằng 1 nên

\(0\le a,b,c\le\left\{{}\begin{matrix}a\left(1-a\right)\ge0\\b\left(1-b\right)\ge0\\c\left(1-c\right)\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a\ge a^2\\b\ge b^2\\c\ge c^2\end{matrix}\right.\)

Suy ra \(\sqrt{5a+4}\ge\sqrt{a^2+4a+4}=\sqrt{\left(a+2\right)^2}=a+2\)

Tương tự ta có: \(\sqrt{5b+4}\ge b+2;\sqrt{5c+4}\ge c+2\)

Do đó: \(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\ge\left(a+b+c\right)+6=7\) (điều phải chứng minh)

Nguyen
24 tháng 10 2019 lúc 21:14

CÁCH KHÁC:

Giả sử \(\Sigma_{cyc}\sqrt{5a+4}< 7\)

Có:\(\sqrt{5a+4}\le\sqrt{\frac{3}{17}}.\frac{5a+4+\frac{17}{3}}{2}=\sqrt{\frac{3}{17}}.\frac{5a+\frac{29}{3}}{2}\)\(=\sqrt{\frac{3}{17}}.\left(\frac{5}{2}a+\frac{29}{6}\right)\)

\(\Rightarrow VT\le\sqrt{\frac{3}{17}}\left[\frac{5}{2}\Sigma a+\frac{29}{2}\right]\)\(=\sqrt{51}>7\)

Ta thấy dấu = có xảy ra (!)
Vậy ta có đpcm.

#Walker

Khách vãng lai đã xóa
Đặng Thị Thu Thảo
Xem chi tiết
Trần Minh Hoàng
22 tháng 1 2021 lúc 18:14

Do \(a,b,c\geq 0\) và \(a+b+c=1\) nên \(a,b,c\le1\).

Xét hiệu \(5a+4-\left(a+2\right)^2=a\left(1-a\right)\ge0\)

\(\Rightarrow5a+4\ge\left(a+2\right)^2\)

\(\Rightarrow\sqrt{5a+4}\ge a+2\).

Tương tự, \(\sqrt{5b+4}\ge b+2;\sqrt{5c+4}\ge c+2\).

Cộng vế với vế ta có \(T\ge a+b+c+6=7\).

Đẳng thức xảy ra khi a = 1; b = c = 0 và các hoán vị.

Vậy Min T = 7 khi a = 1; b = c = 0. 

tthnew
22 tháng 1 2021 lúc 18:21

Một ý tưởng để có được bất đẳng thức phụ \(\sqrt{5a+4}\ge a+2\forall0\le a\le1.\)

Do $0\leq a \leq 1$ nên $a\ge a^2.$

Ta có: \(\sqrt{5a+4}=\sqrt{a+4a+4+\ 4}\ge\sqrt{a^2+4a+4+4}=a+2\)

Ngoài ra còn một cách là giả sử \(\sqrt{5a+4}\ge ma+n\)

rồi đi chọn $m,n$ theo điểm rơi.

Không biết còn cách nào khác không nhỉ?

quangduy
Xem chi tiết
 Mashiro Shiina
18 tháng 3 2019 lúc 19:51

\(a;b;c\ge0;a+b+c=1\Rightarrow a;b;c\le1\)

\(\Rightarrow\left\{{}\begin{matrix}a^2\le a\\b^2\le b\\c^2\le c\end{matrix}\right.\)

\(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\)

\(=\sqrt{a+4a+4}+\sqrt{b+4b+4}+\sqrt{c+4c+4}\)

\(\ge\sqrt{a^2+4a+4}+\sqrt{b^2+4b+4}+\sqrt{c^2+4c+4}=\sqrt{\left(a+2\right)^2}+\sqrt{\left(b+2\right)^2}+\sqrt{\left(c+2\right)^2}\)

\(=a+b+c+2+2+2=7\)

\("="\Leftrightarrow a;b;c\) là hoán vị của (0;0;1)

Nguyễn Hoàng Tuấn Lâm
Xem chi tiết
Tran Le Khanh Linh
12 tháng 4 2020 lúc 16:43

với mọi x,y,z >0 ta có: \(x+y+z\ge3\sqrt[3]{xyz};\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\)

\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{z}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)

\(\Rightarrow\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

đẳng thức xảy ra khi x=y=z

ta có: \(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)

đẳng thức xảy ra khi a=b

tương tự: \(\frac{1}{\sqrt{5b^2+2ab+2b^2}}\le\frac{1}{2b+c}\le\frac{1}{9}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)

đẳng thức xảy ra khi b=c

\(\frac{1}{\sqrt{5c^2+2bc+2c^2}}\le\frac{1}{2c+a}\le\frac{1}{9}\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)

đẳng thức xảy ra khi c=a

Vậy \(\frac{1}{\sqrt{5a^2+2ca+2a^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ac+2a^2}}\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\)

\(\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)

đẳng thức xảy ra khi a=b=c=\(\frac{3}{2}\)

Khách vãng lai đã xóa
Nguyễn Hoàng Tuấn Lâm
29 tháng 1 2020 lúc 21:34

Tham khảo bài của mình

Khách vãng lai đã xóa
lili
29 tháng 1 2020 lúc 21:38

đề sai kìa

Khách vãng lai đã xóa