tính a x 3 + b x 2 + a + 2 x b + c x 4 với(a+b+c)=94
Bài 4: thực hiện các phép tính, sau đó tính giá trị biểu thức:
b, B=(x+1)(x^7-x^6+x^5-x^4+x^3-x^2+x-1) với x=2
c, C=(x+1)(x^6-x^5+x^4-x^3+x^2-x+1) với x=2
d, D=2x(10x^2-5x-2)-5x(4x^2-2x-1) với x=-5
Bài 5: thực hiện phép tính, sau đó tính giá trị biểu thức:
a, A=(x^3-x^2y+xy^2-y^3)(x+y) với x=2,y=-1/2
b, B=(a-b)(a^4+a^3b+a^2b^2+ab^3+b^4) với a=3,b=-2
c, (x^2-2xy+2y^2)(x^2+y^2)+2x^3y-3x^2y^2+2xy^3 với x=-1/2;y=-1/2
Trả lời:
Bài 4:
b, B = ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 )
= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1
= x8 - 1
Thay x = 2 vào biểu thức B, ta có:
28 - 1 = 255
c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 )
= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1
= x7 + 1
Thay x = 2 vào biểu thức C, ta có:
27 + 1 = 129
d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 )
= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x
= x
Thay x = - 5 vào biểu thức D, ta có:
D = - 5
Bài 5:
a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )
= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4
= x4 - y4
Thay x = 2; y = - 1/2 vào biểu thức A, ta có:
A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16
b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 )
= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5
= a5 + a4b - ab4 - b5
Thay a = 3; b = - 2 vào biểu thức B, ta có:
B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65
c, ( x2 - 2xy + 2y2 ) ( x2 + y2 ) + 2x3y - 3x2y2 + 2xy3
= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y2 + 2xy3
= x4 + 2y4
Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:
( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16
Cho các đa thức:
\(A = 3{x^4} - 2{x^3} - x + 1;B = - 2{x^3} + 4{x^2} + 5x;C = - 3{x^4} + 2{x^2} + 5\)
Tính A + B + C; A – B + C và A – B – C
\(\begin{array}{l}A + B + C\\ = (3{x^4} - 2{x^3} - x + 1) + ( - 2{x^3} + 4{x^2} + 5x) + ( - 3{x^4} + 2{x^2} + 5)\\ = 3{x^4} - 2{x^3} - x + 1 - 2{x^3} + 4{x^2} + 5x - 3{x^4} + 2{x^2} + 5\\ = (3{x^4} - 3{x^4}) + ( - 2{x^3} - 2{x^3}) + (4{x^2} + 2{x^2}) + ( - x + 5x) + (1 + 5)\\ = 0 + ( - 4{x^3}) + 6{x^2} + 4x + 6\\ = - 4{x^3} + 6{x^2} + 4x + 6\\A - B + C\\ = (3{x^4} - 2{x^3} - x + 1) - ( - 2{x^3} + 4{x^2} + 5x) + ( - 3{x^4} + 2{x^2} + 5)\\ = 3{x^4} - 2{x^3} - x + 1 + 2{x^3} - 4{x^2} - 5x - 3{x^4} + 2{x^2} + 5\\ = (3{x^4} - 3{x^4}) + ( - 2{x^3} + 2{x^3}) + ( - 4{x^2} + 2{x^2}) + ( - x - 5x) + (1 + 5)\\ = 0 + 0 + ( - 2{x^2}) - 6x + 6\\ = - 2{x^2} - 6x + 6\\A - B - C\\ = (3{x^4} - 2{x^3} - x + 1) - ( - 2{x^3} + 4{x^2} + 5x) - ( - 3{x^4} + 2{x^2} + 5)\\ = 3{x^4} - 2{x^3} - x + 1 + 2{x^3} - 4{x^2} - 5x + 3{x^4} - 2{x^2} - 5\\ = (3{x^4} + 3{x^4}) + ( - 2{x^3} + 2{x^3}) + ( - 4{x^2} - 2{x^2}) + ( - x - 5x) + (1 - 5)\\ = 6{x^4} + 0 + ( - 6{x^2}) - 6x + ( - 4)\\ = 6{x^4} - 6{x^2} - 6x - 4\end{array}\)
Bài 1:Rút gọn rồi tính giá trị biểu thức
a,A=(x-1)^3-4x(x+1)(x-1)+3(x-1)(x^2+x+1) với x=2
b,B=126y^3+(x-5y)(x^2+25y^2+5xy) với x=-5,y=-3
c,C=a^3+b^3-(a^2-2ab+b^2)(a-b) với a=-4,b=4
a/ \(A=\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)+3\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3-3x^2+3x-1-4x^3+4x+3x^3-3\)
\(=-3x^2+7x-4\)
Thay x = 2 vào A được:
\(=-3.2^2+7.2-4=-2\)
Vậy: Giá trị của A khi x = 2 là -2
==========
b/ \(B=126y^3+\left(x-5y\right)\left(x^2+25y^2+5xy\right)\)
\(=126y^3+x^3-125y^3\)
Thay x = -5 và y = -3 vào B được:
\(126.\left(-3\right)^3+\left(-5\right)^3-125.\left(-3\right)^3=-152\)
Vậy: Giá trị của B tại x = -5 và y = -3 là -152
==========
c/ \(C=a^3+b^3-\left(a^2-2ab+b^2\right)\left(a-b\right)\)
\(=a^3+b^3-\left(a-b\right)^3\)
\(=a^3+b^3-a^3+3a^2b-3ab^2+b^3\)
\(=2b^3+3a^2b-3ab^2\)
Thay a = -4 và b = 4 vào C được:
\(2.4^3+3.\left(-4\right)^2.4-3.\left(-4\right).4^2=512\)
Vậy: Giá trị của C tại a = -4 vào b = 4 là 512
a:Ta có: \(A=\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)+3\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3-3x^2+3x-1-4x^3+4x+3x^3-3\)
\(=-3x^2+7x-4\)
\(=-3\cdot2^2+7\cdot2-4\)
\(=-12-4+14=-2\)
c: Ta có: \(C=a^3+b^3-\left(a-b\right)\left(a^2-2ab+b^2\right)\)
\(=a^3+b^3-a^3+3a^2b-3ab^2+b^3\)
\(=2b^3+3a^2b-3ab^2\)
\(=2\cdot4^3+3\cdot\left(-4\right)^2\cdot4-3\cdot\left(-4\right)\cdot4^2\)
\(=128+192+192=512\)
1 Tính Nhanh
a) (-3/4+2/5):3/4+(3/5+ -1/4):3/7
b) (-2/5 x 0,375 x 94) - [ 0,125 x 3,25 x (-8)]
2 Tìm X
a) 1/3 + 1/2 : x = (-4)
b) | x - 3,5 | + 1 = 7,5
c) | x - 2 | = 6 - x
d) x2 - 2x > 0
x2 là x mũ 2 đấy nhé!
Cho biểu thức A=2√x - 3/√x - 2 và B=2/√x+3 + √x/√x-3 + 4√x/9-x với x≥0; x≠4; x≠9. a) tính giá trị biểu thức A khi x thỏa mãn |x-2|=2. b) rút gọn biểu thức B. c) đặt C=A.B. Tìm x để C≥1.
`a)|x-2|=2<=>[(x=4(ko t//m)),(x=0(t//m)):}`
Thay `x=0` vào `A` có: `A=[2\sqrt{0}-3]/[\sqrt{0}-2]=3/2`
`b)` Với `x >= 0,x ne 4` có:
`B=[2(\sqrt{x}-3)+\sqrt{x}(\sqrt{x}+3)-4\sqrt{x}]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[2\sqrt{x}-6+x+3\sqrt{x}-4\sqrt{x}]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[x+\sqrt{x}-6]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[(\sqrt{x}+3)(\sqrt{x}-2)]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[\sqrt{x}-2]/[\sqrt{x}-3]`
`c)` Với `x >= 0,x ne 4` có:
`C=A.B=[2\sqrt{x}-3]/[\sqrt{x}-2].[\sqrt{x}-2]/[\sqrt{x}-3]=[2\sqrt{x}-3]/[\sqrt{x}-3]`
Có: `C >= 1`
`<=>[2\sqrt{x}-3]/[\sqrt{x}-3] >= 1`
`<=>[2\sqrt{x}-3-\sqrt{x}+3]/[\sqrt{x}-3] >= 0`
`<=>[\sqrt{x}]/[\sqrt{x}-3] >= 0`
Vì `x >= 0=>\sqrt{x} >= 0`
`=>\sqrt{x}-3 > 0`
`<=>x > 9` (t/m đk)
Bài 10: Tính giá trị của biểu thức
1/ (-25). ( -3). x với x = 4
2/ (-1). (-4) . 5 . 8 . y với y = 25
3/ (2ab 2 ) : c với a = 4; b = -6; c = 12
4/ [(-25).(-27).(-x)] : y với x = 4; y = -9
5/ (a 2 - b 2 ) : (a + b) (a – b) với a = 5 ; b = -3
a,A= a x 1/2 -a x 2/3 + a.3/4 với a= -6/5
b,B= -1/6 x b + 4/3 x -1/2 x b với b=-3/7
c,C=c x 5/4 + c x 1/6 - c x 17/12 với c =2013/2014
b1. cho a+b+c=0. Chứng minh rằng:
a) (ab+bc+ca)^2=a^2b^2+b^2c^2+c^2a^2
b) a^4+b^4+c^4=2(ab+bc+ca)^2
b2. Chứng minh các đẳng thức sau:
a) (2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)=2^32-1
b)100^2+103^2+105^2+94^2=101^2+98^2+96^2+107^2
b3. tìm x biết:
a) (2x-3)^2+(3x-1)^2=13(x-1)(x+3)
b)(3x-5)^2-2(2x+1)^2=(x-1)(x+2)
c)(x+1)(x-1)(x^2+1)-(x+3)(x-3)(x^2+9)=5
1 \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2\)(Vì a+b+c=0)
b)\(a+b+c=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(ab+bc+ca\right)^2\)
Theo câu a) \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2\) nên ta suy ra được điều cần phải chứng minh là \(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
2.
a) \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow A=1\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
Sử dụng hằng đẳng thức \(\left(a-b\right)\left(a+b\right)=a^2-b^2\)ta được
\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(...\)
\(A=2^{32}-1\left(ĐPCM\right)\)
b) Ta có
\(\left(100^2-101^2\right)+\left(103^2-98^2\right)+\left(105^2-96^2\right)+\left(94^2-107^2\right)\)
=\(201\left(-1+5+9-13\right)=0\)
Suy ra ĐPCM
3
a) Phân tích hết ra rồi chuyển vế làm như bài toán tìm x thông thường
b) Sử dụng bất đẳng thức a^2-b^2= (a-b)(a+b)
c) Sử dụng bất đẳng thức (a-b)(a+b)=a^2-b^2 do ta dễ thấy các biểu thức liên hợp
Không hiểu chỗ nào thì có thể nhắn tin sang để mk giải thích
A(\(x\))=-\(x\)\(^3\)+7\(x\)\(^2\)+2\(x\)-15
B(\(x\))=\(x\)\(^2\)-5\(x^3\)-4\(x\)+7
C(\(x\))=3\(x^3\)-\(7x^2\)-4
tính B(\(x\))-A(\(x\))+C(\(x\)) C(\(x\))-B(\(x\))-A(\(x\))
hellp!!!
`@` `\text {Ans}`
`\downarrow`
`B(x)-A(x)+C(x)`
`=`\((x^2-5x^3-4x+7) - (-x^3 + 7x^2 +2x - 15) + 3x^3 - 7x^2 -4\)
`=`\(x^2-5x^3-4x+7+x^3-7x^2-2x+15+3x^3-7x^2-4\)
`=`\(\left(-5x^3+x^3+3x^3\right)+\left(x^2-7x^2-7x^2\right)+\left(-4x-2x\right)+\left(7+15-4\right)\)
`=`\(-x^3-13x^2-6x+18\)
`C(x)-B(x)-A(x)`
`=`\(3x^3 - 7x^2 -4 - (x^2-5x^3-4x+7) - (-x^3 + 7x^2 +2x - 15)\)
`=`\(3x^3-7x^2-4-x^2+5x^3+4x-7+x^3-7x^2-2x+15\)
`=`\(\left(3x^3+5x^3+x^3\right)+\left(-7x^2-x^2-7x^2\right)+\left(4x-2x\right)+\left(-4-7+15\right)\)
`=`\(9x^3-15x^2+2x+4\)
a) \(B\left(x\right)-A\left(x\right)+C\left(x\right)\)
\(=\left(x^2-5x^3-4x+7\right)-\left(-x^3+7x^2+2x-15\right)+\left(3x^3-7x^2-4\right)\)
\(=x^2-5x^3-4x+7+x^3-7x^2-2x+15+3x^3-7x^2-4\)
\(=\left(-5x^3+x^3+3x^3\right)+\left(x^2-7x^2-7x^2\right)-\left(4x+2x\right)+\left(7-4+15\right)\)
\(=-x^3-13x^2-6x+18\)
b) \(C\left(x\right)-B\left(x\right)-A\left(x\right)\)
\(=\left(3x^3-7x^2-4\right)-\left(x^2-5x^3-4x+7\right)-\left(-x^3+7x^2+2x-15\right)\)
\(=3x^3-7x^2-4-x^2+5x^3+4x-7+x^3-7x^2-2x+15\)
\(=\left(3x^3+5x^3+x^3\right)-\left(7x^2+x^2+7x^2\right)+\left(4x-2x\right)-\left(4+7-15\right)\)
\(=9x^3-15x^2+2x+4\)
\(B\left(x\right)-A\left(x\right)+C\left(x\right)\)
\(=\left(x^2-5x^3-4x+7\right)-\left(-x^3+7x^2+2x-15\right)+\left(3x^3-7x^2-4\right)\)
\(=x^2-5x^3-4x+7+x^3-7x^2-2x+15+3x^3-7x^2-4\)
\(=\left(-5x^3+x^3+3x^3\right)+\left(x^2-7x^2-7x^2\right)+\left(-4x-2x\right)+\left(7+15-4\right)\)
\(=-x^3-13x^2-6x+18\)
\(C\left(x\right)-B\left(x\right)-A\left(x\right)\)
\(=\left(3x^3-7x^2-4\right)-\left(x^2-5x^3-4x+7\right)-\left(-x^3+7x^2+2x-15\right)\)
\(=3x^3-7x^2-4-x^2+5x^3+4x-7+x^3-7x^2-2x+15\)
\(=\left(3x^3+5x^3+x^3\right)+\left(-7x^2-x^2-7x^2\right)+\left(4x-2x\right)+\left(-4-7+15\right)\)
\(=9x^3-15x^2+2x+4\)