Tìm GTNN của :
A = x2 - 4x + 15
B = x.(x - 3x)
C = x2 + y2 +4x + 6y +20
Bài 1: Tìm GTLN hoặc GTNN của biểu thức
a)A= -x2+2x+5
b)B= -x2-y2+4x+4y+2
c)C= x2+y2-2x+6y+12
\(a,-x^2+2x+5=-\left(x^2-2x-5\right)=-\left(x^2-2x+1-6\right)=-\left(x-1\right)^2+6\le6\)
dấu'=' xảy ra<=>x=1=>Max A=6
\(b,B=-x^2-y^2+4x+4y+2=-x^2+4x-4-y^2+4x-4+10\)
\(=-\left(x^2-4x+4\right)-\left(y^2-4x+4\right)+10\)
\(=-\left(x-2\right)^2-\left(y-2\right)^2+10=-\left[\left(x-2\right)^2+\left(y-2\right)^2\right]+10\le10\)
dấu"=" xảy ra<=>x=y=2=>Max B=10
\(c,C=x^2+y^2-2x+6y+12=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)
dấu'=' xảy ra<=>x=1,y=-3=>MinC=2
Bài 1: Tìm GTNN của biểu thức sau:
a) A= 2x2 + x
b) B = x2 + 2x + y2- 4y + 6
c) C = 4x2 + 4x + 9y2 - 6y - 5
d) D = (2 + x)( x + 4) - ( x - 1)( x + 3 )2
b) Ta có: \(B=x^2+2x+y^2-4y+6\)
\(=x^2+2x+1+y^2-4y+4+1\)
\(=\left(x+1\right)^2+\left(y-2\right)^2+1\ge1\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Vậy: \(B_{min}=1\) khi (x,y)=(-1;2)
c) Ta có: \(C=4x^2+4x+9y^2-6y-5\)
\(=4x^2+4x+1+9y^2-6y+1-7\)
\(=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(C_{min}=-7\) khi \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)
\(A=2x^2+x=2\left(x^2+\dfrac{1}{2}x\right)=2\left(x^2+2.\dfrac{1}{4}x+\dfrac{1}{16}-\dfrac{1}{16}\right)\)
\(=2\left[\left(x+\dfrac{1}{4}\right)^2-\dfrac{1}{16}\right]\ge-\dfrac{1}{8}\) dấu"=' xảy ra<=>x=\(-\dfrac{1}{4}\)
\(B=x^2+2x+y^2-4y+6\)
\(=x^2+2x+1+y^2-4y+4+1=\left(x+1\right)^2+\left(y-2\right)^2+1\)
\(\ge1\) dấu"=" xảy ra<=>x=-1;y=2
\(C=4x^2+4x+9y^2-6y-5\)
\(=4x^2+4x+1+9y^2-6y+1-7\)
\(=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\)
dấu"=" xảy ra<=>x=\(-\dfrac{1}{2},y=\dfrac{1}{3}\)
\(D=\left(2+x\right)\left(x+4\right)-\left(x-1\right)\left(x+3\right)^2\)
=\(x^2+6x+8-\left(x-1\right)\left(x+3\right)^2\)
\(=\left(x+3\right)^2-1-\left(x-1\right)\left(x+3\right)^2\)
\(=\left(x+3\right)^2\left(2-x\right)-1\ge-1\)
dấu"=" xảy ra\(< =>\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
1.
a.(-xy)(-2x2y+3xy-7x)
b.(1/6x2y2)(-0,3x2y-0,4xy+1)
c.(x+y)(x2+2xy+y2)
d.(x-y)(x2-2xy+y2)
2.
a.(x-y)(x2+xy+y2)
b.(x+y)(x2-xy+y2)
c.(4x-1)(6y+1)-3x(8y+4/3)
1.
\(a,\left(-xy\right)\left(-2x^2y+3xy-7x\right)\)
\(=2x^3y^2-3x^2y^2+7x^2y\)
\(b,\left(\dfrac{1}{6}x^2y^2\right)\left(-0,3x^2y-0,4xy+1\right)\)
\(=-\dfrac{1}{20}x^4y^3-\dfrac{1}{15}x^3y^3+\dfrac{1}{6}x^2y^2\)
\(c,\left(x+y\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x+y\right)^3\)
\(=x^3+3x^2y+3xy^2+y^3\)
\(d,\left(x-y\right)\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)^3\)
\(=x^3-3x^2y+3xy^2-y^3\)
2.
\(a,\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3-y^3\)
\(b,\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^3+y^3\)
\(c,\left(4x-1\right)\left(6y+1\right)-3x\left(8y+\dfrac{4}{3}\right)\)
\(=24xy+4x-6y-1-24xy-4x\)
\(=\left(24xy-24xy\right)+\left(4x-4x\right)-6y-1\)
\(=-6y-1\)
#Toru
Tìm GTNN của các biểu thức sau:
a. A= 2a2 + 3ab + b22
b. x2 - 4x + y2 - 6y + 1
c. x2 - 4xy + 5y2 -2y + 5
a, xem lại đề
\(b,x^2-4x+y^2-6y+1\\ =\left(x^2-4x+4\right)+\left(y^2-6y+9\right)-12\\ =\left(x-2\right)^2+\left(y-3\right)^2-12\ge-12\)
Dấu "=" xảy ra\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
Vậy ...
\(c,x^2-4xy+5y^2-2y+5\\ =\left(x^2-4xy+4y^2\right)+\left(y^2-2y+1\right)+4\\ =\left(x-2y\right)^2+\left(y-1\right)^2+4\ge4\)
Dấu "=" xảy ra\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy ...
a,
b,x2−4x+y2−6y+1=(x2−4x+4)+(y2−6y+9)−12=(x−2)2+(y−3)2−12≥−12b,x2−4x+y2−6y+1=(x2−4x+4)+(y2−6y+9)−12=(x−2)2+(y−3)2−12≥−12
Dấu "=" xảy ra⇔{x=2y=3⇔{x=2y=3
Vậy ...
c,x2−4xy+5y2−2y+5=(x2−4xy+4y2)+(y2−2y+1)+4=(x−2y)2+(y−1)2+4≥4c,x2−4xy+5y2−2y+5=(x2−4xy+4y2)+(y2−2y+1)+4=(x−2y)2+(y−1)2+4≥4
Dấu "=" xảy ra⇔{x=2y=1⇔{x=2y=1
Vậy ...
Tìm GTNN của :
A = x2 - 4x + 15
B = x.(x - 3x)
C = x2 + y2 +4x + 6y +20
a)\(A=x^2-4x+15\)
\(A=x^2-2x-2x+4+9\)
\(A=x\left(x-2\right)-2\left(x-2\right)+9\)
\(A=\left(x-2\right)^2+9\ge9.Với\forall x\in Q\)
Dấu "=" xảy ra khi \(x-2=0\Leftrightarrow x=2\)
Vậy Min A = 9 <=> x = 2
b)\(B=x\left(x-3x\right)=x.\left(-2x\right)=-2x^2\ge0\)
Dấu "=" xảy ra khi \(x=0\)
Vậy Min B = 0 <=> x = 0
c)\(C=x^2+y^2+4x+6y+20\)
\(C=x^2+4x+4+y^2+6y+9+7\)
\(C=\left(x+2\right)^2+\left(y+3\right)^2+7\ge7\)
Dấu "=" xảy ra khi : x = -2 ; y = -3
Vậy Min C = 7 <=> x = -2 ; y = -3
\(A=x^2-4x+15=x^2-4x+4+11=\left(x-2\right)^2+11\)
Vì \(\left(x-2\right)^2\ge0\left(\forall x\right)\Rightarrow\left(x-2\right)^2+11\ge11\)
Dấu "=" xảy ra <=> (x-2)2 = 0 <=> x-2 = 0 <=> x=2
Vậy GTNN của biểu thức = 11 khi và chỉ khi x = 2
\(C=x^2+y^2+4x+6y+20\)
\(=x^2+4x+4+y^2+6y+9+7\)
\(=\left(x+2\right)^2+\left(x+3\right)^2+7\)
Vì \(\left(x+2\right)^2\ge0\left(\forall x\right);\left(y+3\right)^2\ge0\left(\forall y\right)\)
\(\Rightarrow\left(x+2\right)^2+\left(y+3\right)^2+7\ge7\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-3\end{cases}}}\)
Vậy GTNN của biểu thức bằng 7 khi và chỉ khi x = -2 và y = -3
Mình làm thiếu câu b
\(B=x.\left(x-3x\right)=x.\left(-2x\right)=-2x^2\)
Vì \(x^2\ge0\left(\forall x\right)\Rightarrow-2x^2\ge0\)
Dấu "=" xảy ra <=> x2 = 0<=> x = 0
Vậy GTNN của biểu thức bằng 0 khi và chỉ khi x = 0
Phương trình nào sau đây là phương trình của đường tròn?
(I) x2+ y2 – 4x +15y -12= 0.
(II) x2+ y2 – 3x +4y +20= 0.
(III) 2x2+ 2y2- 4x + 6y +1= 0 .
A. Chỉ (I).
B. Chỉ (II).
C. Chỉ (III).
D. Chỉ (I) và (III).
Ta xét các phương án:
(I) có:
(II) có:
(III) tương đương : x2+ y2 – 2x - 3y + 0,5= 0.
phương trình này có:
Vậy chỉ (I) và (III) là phương trình đường tròn.
Chọn D.
1.Viết biểu thúc sau dưới dạng bình phương của một tổng: 2xy2+x2y4+1 2 Tính giá trị của biểu thức sau: a) x2-y2 tại x= 87 và y=13 b)x3-3x2+3x-1 tại x=101 c) x3+9x2+27x+27 tại x=97 3. Chứng minh rằng: a) (a+b)(a2-ab+b2)+(a-b)(a2+ab+b2)=2a3 b) a3+b3=(a+b)[(a-b)2+ab] 4.Chứng tỏ rằng: a) x2-6x+10>0 với mọi x b) 4x-x2-5<0 với mọi x 5. Tìm giá trị nhỏ nhất của đa thức: a) P=x2-2x+5 b)Q=2x2-6x c) M=x2+y2-x+6y+10 6.Tìm giá trị lớn nhất của đa thức: a) A=4x-x2+3 b) B=x-x2 c)N=2x-2x2-5 7.Rút gọn các biểu thức sau: a)A=(3x+1)2-2(3x+1)(3x+5)+(3x+5)2 b)B=(a+b+c)2+(a-b+c)2-2(b-c)2 c)D= (a+b+c)2+(a-b-c)2+(b-c-a)2+(c-a-b)2 8. a) Tìm GTNN của A= 4/5+│2x-3│ b) Tìm GTLN của B=1/2(x-1)2+3 9.Cho a+b+c=0 C/m: a3+b3+c3= 3abc Câu hỏi tương tự Đọc thêm
MK KO BT MK MỚI HO C LỚP 6
AI HỌC LỚP 6 CHO MK XIN
. Tìm GTLN, GTNN của biểu thức:
1) Tìm GTNN của biểu thức:
a) A = x2 - 7x +11. | b) D = x - 2 + x - 3 . |
c) C = 3 - 4x . x2 +1 | d) B = -5 . x2 - 4x + 7 |
e) x2 - x +1 . M = + x +1 x2 | f) P x 1 x 2 x 3 x 6 . |
2) Tìm GTLN của biểu thức
|
| 2x 2 + 4x + 9 |
|
b) | A = x 2 + 2x + 4 . |
|
| ||||||||||||||||||||
c) C = (x2 - 3x +1)(21+ 3x - x2 ) . | d) D = 6x - 8 . x2 +1 |
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
Bài 3: Tìm x; y thỏa mãn phương trình sau:
x2 - 4x + y2 - 6y + 15 = 2
\(x^2-4x+y^2-6y+15=2\)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-9y+9\right)+2=2\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\)
Vì \(\left(x-2\right)^2\ge0;\left(y-3\right)^2\ge0\)
Mà \(\left(x-2\right)^2+\left(y-3\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-3\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
Vậy (x;y) = (2;3)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-6y+9\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\)
Do \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\) ;\(\forall x;y\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2\ge0\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x-2=0\\y-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
a,A=x2+x-2 b,B=4x-x2+5 c,C=9x2-6x+3 d,D=3x+x2-7 e,E=x2+y2-3x+2y+3 f,F=x2+y2-x+4y+5
Lần sau bạn chú ý viết đầy đủ yêu cầu của đề bài.
a) \(A=x^2+x-2=\left(x+2\right)\left(x-1\right)\)
b) \(B=-x^2+4x+5=-\left(x^2-4x-5\right)=-\left(x-5\right)\left(x+1\right)\)
c) \(C=9x^2-6x+3=3\left(3x^2-2x+1\right)\)