Chứng minh rằng:
\(\dfrac{2cos2x-sin4x}{2cos2x+sin4x}=tan^2\left(\dfrac{\pi}{4}-x\right)\)
Chứng minh
a) \(\dfrac{\sin2x+\sin4x+\sin6x}{2\left(1-\cos x\right)}=\cot^4\dfrac{x}{2}\)
b) \(\dfrac{1-\sin2x}{1+\sin2x}=\tan^2\left(\dfrac{\pi}{4}-x\right)\)
b, \(VT=\dfrac{1-sin2x}{1+sin2x}\)
\(=\dfrac{sin^2x+cos^2x-2sinx.cosx}{sin^2x+cos^2x+2sinx.cosx}\)
\(=\dfrac{\left(sinx-cosx\right)^2}{\left(sinx+cosx\right)^2}\)
\(=\dfrac{\left(\dfrac{sinx-cosx}{cosx}\right)^2}{\left(\dfrac{sinx+cosx}{cosx}\right)^2}\)
\(=\dfrac{\left(\dfrac{sinx}{cosx}-1\right)^2}{\left(\dfrac{sinx}{cosx}+1\right)^2}\)
\(=\dfrac{\left(tanx-tan\dfrac{\pi}{4}\right)^2}{\left(1+tanx.tan\dfrac{\pi}{4}\right)^2}\)
\(=tan^2\left(x-\dfrac{\pi}{4}\right)=tan^2\left(\dfrac{\pi}{4}-x\right)=VP\)
Chứng minh các đồng nhất thức :
a) \(\dfrac{1-\cos x+\cos2x}{\sin2x-\sin x}=\cot x\)
b) \(\dfrac{\sin x+\sin\dfrac{x}{2}}{1+\cos x+\cos\dfrac{x}{2}}=\tan\dfrac{x}{2}\)
c) \(\dfrac{2\cos2x-\sin4x}{2\cos2x+\sin4x}=\tan^2\left(\dfrac{\pi}{4}-x\right)\)
d) \(\tan x-\tan y=\dfrac{\sin\left(x-y\right)}{\cos x\cos y}\)
1) \(\dfrac{1-cosx+cos2x}{sin2x-sinx}=cotx\)
\(VT=\dfrac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}\)
\(VT=\dfrac{cosx\left(2cos-1\right)}{sinx\left(2cosx-1\right)}\)
\(VT=\dfrac{cosx}{sinx}=cotx=VP\) ( đpcm )
b) \(\dfrac{sinx+sin\dfrac{x}{2}}{1+cosx+cos\dfrac{x}{2}}=tan\dfrac{x}{2}\)
\(VT=\dfrac{sin\left(2.\dfrac{x}{2}\right)+sin\dfrac{x}{2}}{1+cos\left(2.\dfrac{x}{2}\right)+cos\dfrac{x}{2}}\)
\(VT=\dfrac{2sin\dfrac{x}{2}.cos\dfrac{x}{2}+sin\dfrac{x}{2}}{1+2cos^2\dfrac{x}{2}-1+cos\dfrac{x}{2}}\)
\(VT=\dfrac{2sin\dfrac{x}{2}.cos\dfrac{x}{2}+sin\dfrac{x}{2}}{2cos^2\dfrac{x}{2}+cos\dfrac{x}{2}}\)
\(VT=\dfrac{sin\dfrac{x}{2}\left(2cos\dfrac{x}{2}+1\right)}{cos\dfrac{x}{2}\left(2cos\dfrac{x}{2}+1\right)}\)
\(VT=\dfrac{sin\dfrac{x}{2}}{cos\dfrac{x}{2}}=tan\dfrac{x}{2}=VP\) ( đpcm )
c) \(\dfrac{2cos2x-sin4x}{2cos2x+sin4x}=tan^2\left(\dfrac{\pi}{4}-x\right)\)
\(VT=\dfrac{2cos2x-sin\left(2.2x\right)}{2cos2x+sin\left(2.2x\right)}\)
\(VT=\dfrac{2cos2x-2sin2x.cos2x}{2cos2x+2sin2x.cos2x}\)
\(VT=\dfrac{2cos2x\left(1-sin2x\right)}{2cos2x\left(1+sin2x\right)}\)
\(VT=\dfrac{1-sin2x}{1+sin2x}\)
\(VP=tan^2\left(\dfrac{\pi}{4}-x\right)=\dfrac{1-cos2\left(\dfrac{\pi}{4}-x\right)}{1+cos2\left(\dfrac{\pi}{4}-x\right)}\)
\(VP=\dfrac{1-cos\left(\dfrac{\pi}{2}-2x\right)}{1+cos\left(\dfrac{\pi}{2}-2x\right)}\)
\(VP=\dfrac{1-sin2x}{1+cos2x}=VT\) ( đpcm )
d) \(tanx-tany=\dfrac{sin\left(x-y\right)}{cosx.cosy}\)
\(VP=\dfrac{sin\left(x-y\right)}{cosx.cosy}=\dfrac{sinx.cosy-cosx.siny}{cosx.cosy}\)
\(VP=\dfrac{sinx.cosy}{cosx.cosy}-\dfrac{cosx.siny}{cosx.cosy}\)
\(VP=\dfrac{sinx}{cosx}-\dfrac{siny}{cosy}=tanx-tany=VT\) ( đpcm )
Câu 1 : Chứng minh rằng : 3 - 4sin2x = 4cos2x - 1Câu 2 : Chứng minh rằng : cos4x - sin4x = 2cos2x - 1 = 1 - 2sin2xCâu 3 : Chứng minh rằng : sin4x + cos4x = 1 - 2sin2xCos2x
1/ \(3-4\sin^2=4\cos^2x-1\Leftrightarrow4\left(\sin^2x+\cos^2x\right)-4=0\Leftrightarrow4.1-4=0\left(ld\right)\Rightarrow dpcm\)
2/ \(\cos^4x-\sin^4x=\left(\cos^2x+\sin^2x\right)\left(\cos^2x-\sin^2x\right)=\cos^2x-\left(1-\cos^2x\right)=2\cos^2x-1=\left(1-\sin^2x\right)-\sin^2x=1-2\sin^2x\)
3/ \(\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x.\cos^2x=1-2\sin^2x.\cos^2x\)
a) Rút gọn biểu thức
\(A=\dfrac{\sin4x+2\sin2x}{\sin4x-2\sin2x}.\cot\left(\dfrac{3\pi}{2}-x\right)\) (khi biểu thức có nghĩa)
b) Cho \(\cot\alpha=\dfrac{4}{3},3\pi< \alpha< \dfrac{7\pi}{2}\). Tính \(\cos\left(\dfrac{2\pi}{3}-\alpha\right)\)
Pt \(tan\left(\dfrac{\pi}{4}.sin4x\right)=\dfrac{3}{2}\) có bao nhiêu họ nghiệm?
sinx . sin4x - 2sin22x = 4sin2\(\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)-\dfrac{7}{2}\)
Tìm nghiệm của pt:
1) \(2cos2x+\sqrt{2}cos\frac{\pi}{4}=0\) thuộc khoảng (0;2π)
2) \(sin4x-cos4x+\sqrt{2}cos\left(4x-\frac{\pi}{4}\right)=\sqrt{6}\) thuộc khoảng (-π;5π)
1.
\(\Leftrightarrow2cos2x+\sqrt{2}.\frac{\sqrt{2}}{2}=0\)
\(\Leftrightarrow cos2x=-\frac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{\frac{\pi}{3};\frac{4\pi}{3};\frac{2\pi}{3};\frac{5\pi}{3}\right\}\)
2.
\(\Leftrightarrow sin4x-cos4x+sin4x+cos4x=\sqrt{6}\)
\(\Leftrightarrow2sin4x=\sqrt{6}\)
\(\Leftrightarrow sin4x=\frac{\sqrt{6}}{2}>1\)
Pt vô nghiệm
giải phương trình
a) \(cos5x=sin3x\)
b) \(sin4x=cos\left(x+\dfrac{\pi}{6}\right)\)
c) \(cos2x.cos\left(\dfrac{\pi}{2}-3x\right)\)
a: =>cos5x=cos(pi/2-3x)
=>5x=pi/2-3x+k2pi hoặc 5x=3x-pi/2+k2pi
=>8x=pi/2+k2pi hoặc 2x=-pi/2+k2pi
=>x=pi/16+kpi/8 hoặc x=-pi/4+kpi
b: sin4x=cos(x+pi/6)
=>sin4x=sin(pi/2-x-pi/6)
=>sin4x=sin(pi/3-x)
=>4x=pi/3-x+k2pi hoặc 4x=pi-pi/3+x+k2pi
=>5x=pi/3+k2pi hoặc 3x=2/3pi+k2pi
=>x=pi/15+k2pi/5 hoặc x=2/9pi+k2pi/3
Tìm Min, Max:
a, y= sin4x + cos4x - 3
b, y= 2sin\(\left(x-\dfrac{\pi}{4}\right)\) với x ϵ \(\left[0;\pi\right]\)
a) y=\(sin^4x+cos^4x-3=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x-3=-2-\dfrac{1}{2}.sin^22x\)
Có \(0\le sin^22x\le1\)
\(\Leftrightarrow-2\ge y\ge-\dfrac{5}{2}\)
Min xảy ra \(\Leftrightarrow sin^22x=1\Leftrightarrow sin2x=1\Leftrightarrow2x=\dfrac{\Pi}{2}+k2\Pi\left(k\in Z\right)\)
\(\Leftrightarrow x=\dfrac{\Pi}{4}+k\Pi\left(k\in Z\right)\)
Max xảy ra \(\Leftrightarrow sin2x=0\Leftrightarrow2x=k\Pi\Leftrightarrow x=\dfrac{k\Pi}{2}\)
b, \(x\in\left[0;\pi\right]\)
=>\(sin\left(x-\dfrac{\pi}{4}\right)\in\left[-\dfrac{\sqrt{2}}{2};1\right]\)
\(\Leftrightarrow2sin\left(x-\dfrac{\pi}{4}\right)\in\left[-\sqrt{2};2\right]\)
\(\Rightarrow\left\{{}\begin{matrix}Miny=-\sqrt{2}\\Maxy=2\end{matrix}\right.\)
Min xảy ra \(\Leftrightarrow x=0\)
Max xảy ra \(\Leftrightarrow x=\dfrac{\pi}{2}\)