Ôn tập chương VI

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Chứng minh các đồng nhất thức :

a) \(\dfrac{1-\cos x+\cos2x}{\sin2x-\sin x}=\cot x\)

b) \(\dfrac{\sin x+\sin\dfrac{x}{2}}{1+\cos x+\cos\dfrac{x}{2}}=\tan\dfrac{x}{2}\)

c) \(\dfrac{2\cos2x-\sin4x}{2\cos2x+\sin4x}=\tan^2\left(\dfrac{\pi}{4}-x\right)\)

d) \(\tan x-\tan y=\dfrac{\sin\left(x-y\right)}{\cos x\cos y}\)

Kuro Kazuya
6 tháng 4 2017 lúc 13:52

1) \(\dfrac{1-cosx+cos2x}{sin2x-sinx}=cotx\)

\(VT=\dfrac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}\)

\(VT=\dfrac{cosx\left(2cos-1\right)}{sinx\left(2cosx-1\right)}\)

\(VT=\dfrac{cosx}{sinx}=cotx=VP\) ( đpcm )

b) \(\dfrac{sinx+sin\dfrac{x}{2}}{1+cosx+cos\dfrac{x}{2}}=tan\dfrac{x}{2}\)

\(VT=\dfrac{sin\left(2.\dfrac{x}{2}\right)+sin\dfrac{x}{2}}{1+cos\left(2.\dfrac{x}{2}\right)+cos\dfrac{x}{2}}\)

\(VT=\dfrac{2sin\dfrac{x}{2}.cos\dfrac{x}{2}+sin\dfrac{x}{2}}{1+2cos^2\dfrac{x}{2}-1+cos\dfrac{x}{2}}\)

\(VT=\dfrac{2sin\dfrac{x}{2}.cos\dfrac{x}{2}+sin\dfrac{x}{2}}{2cos^2\dfrac{x}{2}+cos\dfrac{x}{2}}\)

\(VT=\dfrac{sin\dfrac{x}{2}\left(2cos\dfrac{x}{2}+1\right)}{cos\dfrac{x}{2}\left(2cos\dfrac{x}{2}+1\right)}\)

\(VT=\dfrac{sin\dfrac{x}{2}}{cos\dfrac{x}{2}}=tan\dfrac{x}{2}=VP\) ( đpcm )

c) \(\dfrac{2cos2x-sin4x}{2cos2x+sin4x}=tan^2\left(\dfrac{\pi}{4}-x\right)\)

\(VT=\dfrac{2cos2x-sin\left(2.2x\right)}{2cos2x+sin\left(2.2x\right)}\)

\(VT=\dfrac{2cos2x-2sin2x.cos2x}{2cos2x+2sin2x.cos2x}\)

\(VT=\dfrac{2cos2x\left(1-sin2x\right)}{2cos2x\left(1+sin2x\right)}\)

\(VT=\dfrac{1-sin2x}{1+sin2x}\)

\(VP=tan^2\left(\dfrac{\pi}{4}-x\right)=\dfrac{1-cos2\left(\dfrac{\pi}{4}-x\right)}{1+cos2\left(\dfrac{\pi}{4}-x\right)}\)

\(VP=\dfrac{1-cos\left(\dfrac{\pi}{2}-2x\right)}{1+cos\left(\dfrac{\pi}{2}-2x\right)}\)

\(VP=\dfrac{1-sin2x}{1+cos2x}=VT\) ( đpcm )

d) \(tanx-tany=\dfrac{sin\left(x-y\right)}{cosx.cosy}\)

\(VP=\dfrac{sin\left(x-y\right)}{cosx.cosy}=\dfrac{sinx.cosy-cosx.siny}{cosx.cosy}\)

\(VP=\dfrac{sinx.cosy}{cosx.cosy}-\dfrac{cosx.siny}{cosx.cosy}\)

\(VP=\dfrac{sinx}{cosx}-\dfrac{siny}{cosy}=tanx-tany=VT\) ( đpcm )


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
YếnChiPu
Xem chi tiết
Nguyen Phuong
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Thị Bích Vân
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Ryoji
Xem chi tiết
Thanh Thảo
Xem chi tiết