cho \(\sqrt[3]{x+7}+\sqrt[3]{x-1}=2\)
Cho \(\sqrt{x-3}-\sqrt[3]{y^2+5y+7}=\sqrt{y-1}-\sqrt[3]{x^2+x+1}\)
cho \(P=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{9x-1}\right)\div\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
1, rút gọn P
2, tìm x để \(P\ge0\)
tính P khi \(x=-\sqrt{3-2\sqrt{2}}+\dfrac{\sqrt{7+\sqrt{5}}+\sqrt{7-\sqrt{5}}}{\sqrt{7+2\sqrt{11}}}\)
1: \(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{9x-1}:\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)
\(=\dfrac{3x+3\sqrt{x}}{9x-1}\cdot\dfrac{3\sqrt{x}+1}{3}\)
\(=\dfrac{x+\sqrt{x}}{3\sqrt{x}-1}\)
2: Để P>=0 thì 3 căn x-1>0
hay x>1/9
Cho 2 biểu thức: A = \(\dfrac{x+7}{3\sqrt{x}}\) và B = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{7\sqrt{x}+3}{9-x}\)với x>0, x≠9
Tìm GTNN của biểu thức P = A.B
cho biểu thức P=\(\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right)\):\(\left(\dfrac{\sqrt{x}-1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
1. Rút gọn biểu thức P
2. Tính giá trị của P biết x=\(\sqrt{7+4\sqrt{3}}\)+\(\sqrt{7-4\sqrt{3}}\)
\(1,P=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right):\left(\dfrac{\sqrt{x}-1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\left(dkxd:x\ge0,x\ne9\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{2x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{2}{\sqrt{x}}\right)\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)-2x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{\sqrt{x}-1-2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-3\sqrt{x}-2x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}-1-2\sqrt{x}+6}\)
\(=\dfrac{-x-3\sqrt{x}}{\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}}{-\sqrt{x}+5}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}}{5-\sqrt{x}}\)
\(=-\dfrac{x}{5-\sqrt{x}}\)
\(2,x=\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\left|2+\sqrt{3}\right|+\left|2-\sqrt{3}\right|\)
\(=2+\sqrt{3}+2-\sqrt{3}=4\)
\(x=4\Rightarrow P=-\dfrac{4}{5-\sqrt{4}}=\dfrac{-4}{5-2}=-\dfrac{4}{3}\)
Cho hai biểu thức:
A= \(\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)}^2\)
B= \(\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\left(x>0;x\ne9\right)\)
a) Rút gọn A,B
b) Tìm các giá trị của x để A>B?
Help !!!
a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\sqrt{2^2\cdot7}-\sqrt{3^2\cdot7}+\dfrac{\sqrt{7}\cdot\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)
\(=2\sqrt{7}-3\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1\)
\(=-\sqrt{7}\)
\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\cdot\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)
\(=\left[\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]\cdot\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)
\(=\dfrac{2\cdot4}{\sqrt{x}-3}\)
\(=\dfrac{8}{\sqrt{x}-3}\)
b) \(A>B\) khi
\(\dfrac{8}{\sqrt{x}-3}< -\sqrt{7}\)
\(\Leftrightarrow8< -\sqrt{7x}+3\sqrt{7}\)
\(\Leftrightarrow x< \dfrac{\left(3\sqrt{7}-8\right)^2}{7}\)
Cho biểu thức M=\(\left(\dfrac{x+\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}+\dfrac{1}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}-x+\sqrt{x}-1}\right)\)với x≥0,x≠1
a)Rút gọn M
b)Tính M khi x=\(\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
a) \(M=\dfrac{x+\sqrt{x}+\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x+1\right)}:\dfrac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(x+1\right)}.\dfrac{\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
b) \(x=\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=2+\sqrt{3}+2-\sqrt{3}=4\)
\(M=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{4}+1}{\sqrt{4}-1}=\dfrac{2+1}{2-1}=3\)
giải phương trình vô tỉ
1,\(\sqrt{1-\sqrt{x}}+\sqrt{4+x}=3\)
2,\(\sqrt{x+1}+\sqrt[3]{7-x}=2\)
3,\(\sqrt{x}+\sqrt{x+1}=\sqrt{x-1}+\sqrt{x+4}\)
4,\(\left(x+3\right)\sqrt{10-x^2}=x^2-x-12\)
5,\(\sqrt[3]{x-1}+\sqrt[3]{x-2}=\sqrt[3]{2x-3}\)
4) Ta có: \(\left(x+3\right)\cdot\sqrt{10-x^2}=x^2-x-12\)
\(\Leftrightarrow\left(x+3\right)\cdot\sqrt{10-x^2}-\left(x-4\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(\sqrt{10-x^2}-x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\\sqrt{10-x^2}=x-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\10-x^2=x^2-8x+16\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x^2-8x+16-10+x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\2x^2-8x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\2\left(x^2-4x+3\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\\left(x-1\right)\left(x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\\x=3\end{matrix}\right.\)
Cho hai biểu thức:
A= \(3+\sqrt[3]{-8}.\sqrt{3}+\sqrt[3]{27}.\sqrt{3}-\sqrt{7+4\sqrt{3}}\)
B= \(\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\left(x>0;x\ne1\right)\)
a) Rút gọn A,B
b) Tìm các giá trị của x để B<A?
Help !!!
a: \(A=3+\left(-2\right)\cdot\sqrt{3}+3\cdot\sqrt{3}-2-\sqrt{3}\)
\(=3-2=1\)
\(B=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
b: B<A
=>B-1<0
=>\(\dfrac{\sqrt{x}-1-\sqrt{x}}{\sqrt{x}}< 0\)
=>-1/căn x<0
=>căn x>0
=>x>0 và x<>1
a) \(\left(\dfrac{1}{2-\sqrt{3}}-\dfrac{3}{\sqrt{7}-2}\right):\dfrac{2}{\sqrt{7}+\sqrt{3}}\)
b) \(\left(\dfrac{x-\sqrt{x}}{1-\sqrt{x}}-1\right):\left(\sqrt{x}-x\right)+\dfrac{1}{x}\)
a) Ta có: \(\left(\dfrac{1}{2-\sqrt{3}}-\dfrac{3}{\sqrt{7}-2}\right):\dfrac{2}{\sqrt{7}+\sqrt{3}}\)
\(=\left(2+\sqrt{3}-\sqrt{7}-2\right):\dfrac{\left(\sqrt{7}-\sqrt{3}\right)}{2}\)
\(=\dfrac{-\left(\sqrt{7}-\sqrt{3}\right)}{1}\cdot\dfrac{2}{\sqrt{7}-\sqrt{3}}\)
=-2
b) Ta có: \(\left(\dfrac{x-\sqrt{x}}{1-\sqrt{x}}-1\right):\left(\sqrt{x}-x\right)+\dfrac{1}{x}\)
\(=\left(-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-1\right)\cdot\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{x}\)
\(=\left(-\sqrt{x}-1\right)\cdot\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{x}\)
\(=\dfrac{x+\sqrt{x}}{x\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}-1}{x\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+2\sqrt{x}-1}{x\left(\sqrt{x}-1\right)}\)
1, \(\sqrt{x-1}+\sqrt{x-4}=5\)
2, \(2x-7\sqrt{x}+5=0\)
3, \(\sqrt{2x+1}+\sqrt{x-3}=2\sqrt{x}\)
4, \(x-4\sqrt{x}+2021\sqrt{x-4}+4=0\)
5, \(\sqrt{2x-3}-\sqrt{x+1}=7\left(4-x\right)\)
1. ĐKXĐ: $x\geq 4$
PT $\Leftrightarrow \sqrt{x-1}=5-\sqrt{x-4}$
$\Rightarrow x-1=25+x-4-10\sqrt{x-4}$
$\Leftrightarrow 22=10\sqrt{x-4}$
$\Leftrightarrow 2,2=\sqrt{x-4}$
$\Leftrightarrow 4,84=x-4\Leftrightarrow x=8,84$
(thỏa mãn)
2. ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow (2x-2\sqrt{x})-(5\sqrt{x}-5)=0$
$\Leftrightarrow 2\sqrt{x}(\sqrt{x}-1)-5(\sqrt{x}-1)=0$
$\Leftrightarrow (\sqrt{x}-1)(2\sqrt{x}-5)=0$
$\Leftrightarrow \sqrt{x}-1=0$ hoặc $2\sqrt{x}-5=0$
$\Leftrightarrow x=1$ hoặc $x=\frac{25}{4}$ (tm)
3. ĐKXĐ: $x\geq 3$
Bình phương 2 vế thu được:
$3x-2+2\sqrt{(2x+1)(x-3)}=4x$
$\Leftrightarrow 2\sqrt{(2x+1)(x-3)}=x+2$
$\Leftrightarrow 4(2x+1)(x-3)=(x+2)^2$
$\Leftrightarrow 4(2x^2-5x-3)=x^2+4x+4$
$\Leftrightarrow 7x^2-24x-16=0$
$\Leftrightarrow (x-4)(7x+4)=0$
Do $x\geq 3$ nên $x=4$
Thử lại thấy thỏa mãn
Vậy $x=4$
4. ĐKXĐ: $x\geq 4$
PT $\Leftrightarrow (x-4\sqrt{x}+4)+2021\sqrt{x-4}=0$
$\Leftrightarrow (\sqrt{x}-2)^2+2021\sqrt{x-4}=0$
Ta thấy, với mọi $x\geq 4$ thì:
$(\sqrt{x}-2)^2\ge 0$
$2021\sqrt{x-4}\geq 0$
Do đó để tổng của chúng bằng $0$ thì:
$\sqrt{x}-2=\sqrt{x-4}=0$
$\Leftrightarrow x=4$ (tm)