\(tgx+cotgx=2\)
b)Biết tgx + cotgx = 2 .Tính A= sinx.Cosx
và B =sinx + cosx
Lời giải:
$\tan x +\cot x=2$. Mà $\tan x\cot x =1$
$\Rightarrow \tan x = \cot x =1$
$\Rightarrow x=45^0$
$\Rightarrow A=\sin x\cos x =\sin 45^0.\cos 45^0=\frac{1}{2}$
$B=\sin x+\cos x= \sin 45^0+\cos 45^0=\sqrt{2}$
Tìm x biết tgx + cotgx = 2
\(tgx+cotgx=2\\ 3tg^4x+2tg^2x-1=0\)
a: \(\Leftrightarrow\dfrac{2}{\sin2x}=2\)
\(\Leftrightarrow\sin2x=1\)
\(\Leftrightarrow2x=\dfrac{\Pi}{2}+k2\Pi\)
hay
b: \(\Leftrightarrow3\cdot tan^4x+3tan^2x-tan^2x-1=0\)
\(\Leftrightarrow3tan^2x-1=0\)
\(\Leftrightarrow tan^2x=\dfrac{1}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(\dfrac{1}{\sqrt{3}}\right)+k\Pi=\dfrac{\Pi}{6}+k\Pi\\x=-\dfrac{\Pi}{6}+k\Pi\end{matrix}\right.\)
Cho x là một góc nhọn, biểu thức sau đây có giá trị âm hay dương? Vì sao? tgx – cotgx
Ta có: *nếu x = 45 ° thì tgx = cotgx, suy ra: tgx – cotgx = 0
*nếu x < 45 ° thì cotgx = tg( 90 ° – x)
Vì x < 45 ° nên 90 ° – x > 45 ° , suy ra: tgx < tg( 90 ° – x)
Vậy tgx – cotgx < 0
*nếu x > 45 ° thì cotgx = tg( 90 ° – x)
Vì x > 45 ° nên 90 ° – x < 45 ° , suy ra: tgx > tg( 90 ° – x)
Vậy tgx – cotgx > 0.
Dùng bảng lượng giác hoặc máy tính bỏ túi để tìm số đo của góc nhọn x (làm tròn đến phút), biết rằng:
a) sin x = 0,2368 ; b) cosx = 0,6224
c) tgx = 2,154 ; d) cotgx = 3,251
a) Dùng bảng lượng giác sinx = 0,2368 => x ≈ 13o42'
- Cách nhấn máy tính:
b) x ≈ 51o31'
- Cách nhấn máy tính:
c) x ≈ 65o6'
- Cách nhấn máy tính:
d) x ≈ 17o6'
- Cách nhấn máy tính:
Chứng minh các biểu thức sau không phụ thuộc vào x:
a) \(A=2\left(cos^6x+sin^6x\right)-3\left(cos^4x+sin^4x\right)\)
b) \(B=2\left(sin^4x+cos^4x+sin^2x.cos^2x\right)^2-sin^8x-cos^8x\)
c) \(C=\dfrac{sin^2x}{1+cotgx}+\dfrac{cos^2x}{1+tgx}+sinx.cosx\)
d) \(D=\dfrac{cotg^2a-cos^2x}{cotg^2x}+\dfrac{sinx.cosx}{cotgx}\)
e) \(E=3\left(sin^8x-cos^8x\right)+4\left(cos^6x-2sin^6x\right)+6sin^4x\)
f) \(F=\dfrac{tg^2x}{sin^2x.cos^2x}-\left(1+tg^2x\right)^2\)
Cho \(x\) là một góc nhọn, biểu thức sau đây có giá trị âm hay dương ? Vì sao ?
a) \(\sin x-1\)
b) \(1-\cos x\)
c) \(\sin x-\cos x\)
d) \(tgx-cotgx\)
a: \(0< \sin x< 1\)
nên \(\sin x-1< 0\)
b: \(0< \cos x< 1\)
nên \(1-\cos x>0\)
Chứng minh :
a) Tgx=\(\dfrac{8sinx}{Cosx}\)
b) Cotg x = \(\dfrac{Cosx}{Sinx}\)
c)Tgx.Cotgx=1
d) \(\dfrac{1}{Cos^2x}\)=1tg\(^2\)x
e)\(\dfrac{1}{Sin^2x}\)=1+ cotg\(^2\)x
g)Sin\(^4\)+Cos\(^4\)x = 1-2sin\(^2\)x . Cos\(^2\)x
h) \(\dfrac{1}{Tgx+1}\)+\(\dfrac{1}{Cotgx+1}\)=1
Mọi người giúp mình với ạ được câu nào đỡ câu đấy , mình đang cần gấp cảm ơn nhiều ạ !!
cho Tanx =2 .Tìm Sin X Cos X cotgX
Vẽ ΔABC vuông tại A có \(x=\widehat{B}\)
Ta có: \(\tan x=\tan\widehat{B}=\frac{AC}{AB}\)
mà \(\tan x=2\)
nên \(\frac{AC}{AB}=2\)
hay \(AC=2\cdot AB\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=AB^2+\left(2\cdot AB\right)^2=5\cdot AB^2\)
hay \(BC=AB\cdot\sqrt{5}\)
Xét ΔABC vuông tại A có \(\sin x=\sin\widehat{B}=\frac{AC}{BC}=\frac{2\cdot AB}{\sqrt{5}\cdot AB}=\frac{2}{\sqrt{5}}=\frac{2\sqrt{5}}{5}\)
\(\cos x=\cos\widehat{B}=\frac{AB}{BC}=\frac{AB}{\sqrt{5}\cdot AB}=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}\)
\(\cot x=\cot\widehat{B}=\frac{1}{\tan x}=\frac{1}{2}\)