Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khánh Linh Đinh
Xem chi tiết
Akai Haruma
28 tháng 10 2021 lúc 8:22

Lời giải:
$\tan x +\cot x=2$. Mà $\tan x\cot x =1$

$\Rightarrow \tan x = \cot x =1$

$\Rightarrow x=45^0$

$\Rightarrow A=\sin x\cos x =\sin 45^0.\cos 45^0=\frac{1}{2}$

$B=\sin x+\cos x= \sin 45^0+\cos 45^0=\sqrt{2}$

Nguyễn Lê Phước Thịnh
21 tháng 7 2022 lúc 22:41

a: \(\Leftrightarrow\dfrac{2}{\sin2x}=2\)

\(\Leftrightarrow\sin2x=1\)

\(\Leftrightarrow2x=\dfrac{\Pi}{2}+k2\Pi\)

hay 

b: \(\Leftrightarrow3\cdot tan^4x+3tan^2x-tan^2x-1=0\)

\(\Leftrightarrow3tan^2x-1=0\)

\(\Leftrightarrow tan^2x=\dfrac{1}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(\dfrac{1}{\sqrt{3}}\right)+k\Pi=\dfrac{\Pi}{6}+k\Pi\\x=-\dfrac{\Pi}{6}+k\Pi\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 7 2019 lúc 4:30

Ta có: *nếu x =  45 °  thì tgx = cotgx, suy ra: tgx – cotgx = 0

*nếu x <  45 °  thì cotgx = tg( 90 °  – x)

Vì x <  45 °  nên  90 °  – x >  45 ° , suy ra: tgx < tg( 90 °  – x)

Vậy tgx – cotgx < 0

*nếu x > 45 °  thì cotgx = tg( 90 ° – x)

Vì x >  45 °  nên  90 °  – x <  45 ° , suy ra: tgx > tg( 90 °  – x)

Vậy tgx – cotgx > 0.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 5 2019 lúc 2:56

a) Dùng bảng lượng giác sinx = 0,2368 => x ≈ 13o42'

- Cách nhấn máy tính:

Để học tốt Toán 9 | Giải bài tập Toán 9

b) x ≈ 51o31'

- Cách nhấn máy tính:

Để học tốt Toán 9 | Giải bài tập Toán 9

c) x ≈ 65o6'

- Cách nhấn máy tính:

Để học tốt Toán 9 | Giải bài tập Toán 9

d) x ≈ 17o6'

- Cách nhấn máy tính:

Để học tốt Toán 9 | Giải bài tập Toán 9

Lâm Ánh Yên
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 5 2022 lúc 19:39

a: \(0< \sin x< 1\)

nên \(\sin x-1< 0\)

b: \(0< \cos x< 1\)

nên \(1-\cos x>0\)

 

Lữ Diễm My
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 10 2020 lúc 19:22

Vẽ ΔABC vuông tại A có \(x=\widehat{B}\)

Ta có: \(\tan x=\tan\widehat{B}=\frac{AC}{AB}\)

\(\tan x=2\)

nên \(\frac{AC}{AB}=2\)

hay \(AC=2\cdot AB\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=AB^2+\left(2\cdot AB\right)^2=5\cdot AB^2\)

hay \(BC=AB\cdot\sqrt{5}\)

Xét ΔABC vuông tại A có \(\sin x=\sin\widehat{B}=\frac{AC}{BC}=\frac{2\cdot AB}{\sqrt{5}\cdot AB}=\frac{2}{\sqrt{5}}=\frac{2\sqrt{5}}{5}\)

\(\cos x=\cos\widehat{B}=\frac{AB}{BC}=\frac{AB}{\sqrt{5}\cdot AB}=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}\)

\(\cot x=\cot\widehat{B}=\frac{1}{\tan x}=\frac{1}{2}\)

Khách vãng lai đã xóa