Chứng minh các bất đẳng thức
\(\dfrac{a^2+3}{\sqrt{a^2+2}}\) Với mọi a
\(\dfrac{\sqrt{bc}}{a+2\sqrt{bc}}\)+\(\dfrac{\sqrt{ca}}{b+2\sqrt{ca}}\)+\(\dfrac{\sqrt{ab}}{c+2\sqrt{ab}}\) ≤ 1 cho a,b,c là 3 số dương. Chứng minh các BĐT sau
-Mình thử trình bày cách làm của mình nhé, bạn xem thử có gì sai sót không hoặc chỗ nào bạn không hiểu thì hỏi mình nhé.
chứng minh các bất đẳng thức sau:
a)\(\left(\dfrac{a+b}{2}\right)^2>=ab\) với mọi a,b
b)\(a^2+b^2+c^2>ab+bc+ca\)
a, \(\dfrac{a^2+2ab+b^2}{4}\ge ab\)
\(\Leftrightarrow\)a^2+2ab+b^2>=4ab
\(\Leftrightarrow\)a^2-2ab+b^2>=0
\(\Leftrightarrow\)(a-b)^2>=0 (luôn đúng)
b,\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) luôn đúng
Chứng minh bất đẳng thức: \(\sqrt{a^2+b^2}\ge\frac{a+b}{\sqrt{2}}\) Với mọi a,b
1, Chứng minh bất đẳng thức:
\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}\ge3\forall a\ge1\)
2, Giải phương trình:
\(x\left(x^2-3x+3\right)+\sqrt{x+3}=3\)
Mong mọi người giúp mình với ạ!! Mình cảm ơn nhiều!!
Bài 1:
Vì $a\geq 1$ nên:
\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}=a+\sqrt{(a-1)^2+4}+\sqrt{a-1}\)
\(\geq 1+\sqrt{4}+0=3\)
Ta có đpcm
Dấu "=" xảy ra khi $a=1$
Bài 2:
ĐKXĐ: x\geq -3$
Xét hàm:
\(f(x)=x(x^2-3x+3)+\sqrt{x+3}-3\)
\(f'(x)=3x^2-6x+3+\frac{1}{2\sqrt{x+3}}=3(x-1)^2+\frac{1}{2\sqrt{x+3}}>0, \forall x\geq -3\)
Do đó $f(x)$ đồng biến trên TXĐ
\(\Rightarrow f(x)=0\) có nghiệm duy nhất
Dễ thấy pt có nghiệm $x=1$ nên đây chính là nghiệm duy nhất.
Chứng minh bất đẳng thức Cô-si
Bất đẳng thức Cô-si cho hai số là:
\(\dfrac{a+b}{2}\) ≥\(\sqrt{ab}\) , a≥0 , b≥0
Giúp với mai mink thi rồi
Ta có : \(\left(a-b\right)^2\ge0\)
\(\Rightarrow a^2+b^2+2ab\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
Có : \(a,b\ge0\)
\(\Rightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\) ( đpcm )
Vậy ...
chứng minh bất đẳng thức sau
\(\dfrac{a}{bc}\)+\(\dfrac{b}{ca}\)+\(\dfrac{c}{ab}\)≥\(\dfrac{2}{a}\)+\(\dfrac{2}{b}\)+\(\dfrac{2}{c}\)( với a,b,c là các số dương)
\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\) . Chứng minh bất đẳng thức với ∀a,b,c ≥0
Mọi người giúp em với ạ .
Áp dụng BĐT Cauchy dạng engel ta có:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{(a+b+c)^2}{a+b+c}=a+b+c(đpcm) \)
theo bđt cauchy ta có
\(\left\{{}\begin{matrix}\dfrac{a^2}{b}+b\ge2a\\\dfrac{b^2}{c}+c\ge2b\\\dfrac{c^2}{a}+a\ge2c\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+a+b+c\ge2a+2b+2c\)
\(\Leftrightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)
\(\Rightarrow dpcm\)
Chứng minh các đẳng thức sau:
c) \(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\dfrac{2b}{b-a}=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\) ( với a,b > 0 và a \(\ne\) b )
\(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\dfrac{2b}{b-a}\left(a,b>0;a\ne b\right)\\ =\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\\ =\dfrac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\\ =\dfrac{4\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
Tick plz
Ta có: \(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\dfrac{2b}{b-a}\)
\(=\dfrac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{4b+4\sqrt{ab}}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{4\sqrt{b}\left(\sqrt{b}+\sqrt{a}\right)}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{b}+\sqrt{a}\right)}\)
\(=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
Chứng minh bất đẳng thức sau:
\(\dfrac{1}{\sqrt{a}}< \sqrt{a+1}-\sqrt{a-1}\) với a>1
\(\dfrac{1}{\sqrt{a}}< \sqrt{a+1}-\sqrt{a-1}\) <=> \(\left(\dfrac{1}{\sqrt{a}}\right)^2< \left(\sqrt{a+1}-\sqrt{a-1}\right)^2\)
<=> \(\dfrac{1}{a}< \left(a+1\right)+\left(a-1\right)-2\sqrt{a^2-1}\)
<=> \(2\sqrt{a^2-1}< 2a-\dfrac{1}{a}\)
<=> \(4\left(a^2-1\right)< 2\left(2a-\dfrac{1}{a}\right)^2\) <=> \(\dfrac{1}{a^2}>0\)
Vậy \(\dfrac{1}{\sqrt{a}}< \sqrt{a+1}-\sqrt{a-1}\) với mọi a ≥ 0=> đpcm.