7. Cho ΔABC cân tại C, CA = CB = 5 cm; AB = 8 cm. Kẻ CH ⊥ AB (H ∈ AC)
a) Chứng minh \(\Delta CHA=\Delta CHB\)
b) Tính CH.
c) Kẻ HD ⊥ AC (D ∈ AC); HE ⊥ AC (E ∈ BC). Tính HD và HE
Cho ΔABC cân tại A. Trên tia đối của tia BC lấy điểm H, trên tia đối của tia CB lấy K sao cho BH=CK.
a) CM: ΔAHK cân
b) Kẻ BM vuông góc với AH (M ϵAH), CN vuông góc với AK (NϵAK). CM ΔAMN cân
a: Xét ΔABH và ΔACK có
AB=AC
\(\widehat{ABH}=\widehat{ACK}\)
BH=CK
Do đó: ΔABH=ΔACK
Suy ra: AH=AK
hay ΔAHK cân tại A
b: Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
\(\widehat{MAB}=\widehat{NAC}\)
Do đó: ΔAMB=ΔANC
Suy ra: AM=AN
hay ΔAMN cân tại A
Cho ΔABC có ba góc nhọn biết AB=4cm và gócC=300 .Đường tròn tâm O đường kính AB cắt các cạnh CA,CB lần lượt tại F và E.Độ dài đoạn thẳng FE bằng
A.2\(\sqrt{3}\)cm B.\(4\sqrt{3}cm\) C.\(\sqrt{3}cm\) D.4cm
Hai điện tích điểm q1 = -10-7 C và q2 = 5.10-8 C đặt tại hai điểm A và B trong chân không cách nhau 5 cm. Xác định lực điện tổng hợp tác dụng lên điện tích q3 = 2.10-8 C đặt tại điểm C sao cho:
a) CA = 2cm; CB = 3cm
b) CA = 10cm; CB = 5cm
c) CA = 3 cm, CB = 4 cm
Cho ΔABC cân tại A(BC>AB) có đường trung tuyến AI và trọng tâm G.
a, Biết AB=5cm;BC=8cm. Tính đôi dài của các đoạn thẳng AI,BG.
b, M∈tia đối của tia AC, AM=AB.N∈tia đối của tia CA, CN=CB. C/minh BN>BM
a) Ta có: ΔABC cân tại A(gt)
mà AI là đường trung tuyến ứng với cạnh đáy BC(gt)
nên AI là đường cao ứng với cạnh BC(Định lí tam giác cân)
hay AI\(\perp\)BC
Ta có: I là trung điểm của BC(gt)
nên \(BI=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABI vuông tại I, ta được:
\(AI^2+BI^2=AB^2\)
\(\Leftrightarrow AI^2=AB^2-BI^2=5^2-4^2=9\)
hay AI=3(cm)
Vậy: AI=3cm
Cho ΔABC cân tại A có AB>BC, đg cao AH. Trên tia đối của CA lấy F ,trên AB lấy E sao co CF=AE. Kẻ CK⊥AB
a) CM ΔAEC =ΔFCB từ đó =>ΔABF cân
b) CM ΔBCE có 3 gọc lần lượt bằng các góc của ΔABC.
Cho ΔABC cân tại A có AB>BC, đg cao AH. Trên tia đối của CA lấy F ,trên AB lấy E sao co CF=AE. Kẻ CK⊥AB
a) CM ΔAEC =ΔFCB từ đó =>ΔABF cân
b) CM ΔBCE có 3 góc lần lượt bằng các góc của ΔABC.
Cho ΔABC vuông tại A, AB > AC, M là điểm bất kì trên BC. Qua M kẻ Mx⊥BC, Mx cắt AB tại I và cắt CA tại D.
a) CM: ΔBMI đồng dạng với ΔBAC.
b) CM: BM.BC = BI.BA.
c) AB = 4cm, AC = 3cm, BM = 1,8cm. Tính BC, BI.
d) CM: CA.CD = CM. CB và ΔCAM đồng dạng với ΔCBD.
a: Xét ΔBMI vuông tại M và ΔBAC vuông tại A có
góc B chung
=>ΔBMI đồng dạng với ΔBAC
b: ΔBMI đồng dạng với ΔBAC
=>BM/BA=BI/BC
=>BM*BC=BA*BI
c:
BC=căn 4^2+3^2=5cm
BA*BI=BM*BC
=>1,8*5=BI*4
=>BI=2,25cm
d: Xét ΔCMD vuông tại M và ΔCAB vuông tại A có
góc C chung
=>ΔCMD đồng dạng với ΔCAB
=>CM/CA=CD/CB
=>CM*CB=CD*CA và CM/CD=CA/CB
=>ΔCMA đồng dạng với ΔCDB
Cho ΔABC cân tại A. Vẽ AH⊥BC tại H.
a) CM: ΔABH=ΔACH.
b) Trên tia đối tia CB lấy điểm NN, trên tia đối của tia BC lấy điểm M sao cho BM=CN. CM:ΔAMN cân
c)Kẻ BD⊥AM tại điểm D, CE⊥ AN tại E, CE cắt BD tạu K. CM: 3điểm A, H, K thẳng hàng
a, Do tam giác ABC cân tại A(gt) => AB=AC
Do AH\(\perp\)BC(gt)=> \(\widehat{AHB}=\widehat{AHC}=90^o\)
Xét tam giác ABH và tam giác ACH có:
\(\widehat{AHB}=\widehat{AHC}=90^o\left(cmt\right)\)
AB=AC(cmt)
AH chung
=> tam giác ABH=tam giác ACH(ch-cgv)
b, Do tam giác ABH=tam giác ACH(câu a)
\(\)=> HB=HC (2 cạnh tương ứng)
Do tam giác ABC cân tại A(gt)=> \(\widehat{ABC}=\widehat{ABC}\)
Ta có: \(\widehat{ABC}+\widehat{ABM}=180^o\)(kề bù)
\(\widehat{ACB}+\widehat{ACN}=180^o\)(kề bù)
\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)
Xét tam giác ABM và tam giác ACN có:
AB=AC(câu a)
\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)
BM=CN(gt)
=>tam giác ABM và tam giác ACN(c.g.c)
\(\Rightarrow AM=AN\) (2 cạnh tương ứng)
\(\Rightarrow\Delta AMN\) cân tại A
1. cho tam giác ABC vuông tại A , AB=AC=2. độ dài vectơ 4AB - AC bằng?
2. cho tam giác ABC có M thuộc cạnh AB sao cho AM=3MB. đẳng thức nào sau đây đúng?
A. vt CM = 1/4 vt CA + 3/4 vt CB
B. CM = 7/4 CA + 3/4 CB
C. CM= 1/2 CA+ 3/4 CB
D. CM= 1/4 CA - 3/4 CB
1,Ta có luôn tồn tại một điểm K sao cho \(4\overrightarrow{AB}-\overrightarrow{AC}=3\overrightarrow{AK}\).(*) Thật vậy:
VT(*) = \(4\left(\overrightarrow{AK}+\overrightarrow{KB}\right)-\left(\overrightarrow{AK}+\overrightarrow{KC}\right)=3\overrightarrow{AK}+4\overrightarrow{KB}-\overrightarrow{KC}\) (**)
Từ (*) và (**) ta có : \(4\overrightarrow{KB}-\overrightarrow{KC}=\overrightarrow{0}\) ⇔\(4\overrightarrow{KB}=\overrightarrow{KC}\) ⇒ B nằm giữa K và C sao cho 4KB = KC= \(\dfrac{4}{3}\) .BC.
Khi đó ta có : \(\left|4\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{3AK}\right|=3AK\)
Ap dụng định lí Py-ta-go cho tam giác ABC vuông tại A ta được:
BC2= AB2 + AC2 ⇒BC = \(\sqrt{2^2+2^2}=2\sqrt{2}\)⇒ KC = \(\dfrac{4}{3}\).BC = \(\dfrac{4}{3}\). \(2\sqrt{2}\)
⇒KC = \(\dfrac{8\sqrt{2}}{3}\)
Ta có : tam giác ABC vuông cân tại A nên \(\widehat{ACB}=\widehat{ACK}=45^O\)
Ap dụng định lí cosin ta có : Trong tam giác ACK có
AK = \(\sqrt{AC^2+KC^2-2AK.KC.\cos\widehat{ACK}}=\sqrt{2^2+\left(\dfrac{8\sqrt{2}}{3}\right)^2-2.2.\dfrac{8\sqrt{2}}{3}.\cos45^O}=\dfrac{2\sqrt{17}}{3}\)
⇒3AK=2\(\sqrt{17}\)⇒ \(\left|4\overrightarrow{AB}-\overrightarrow{AC}\right|\)=2\(\sqrt{17}\)
VẬY.....................
Câu 2: AM=3MB => vt AC + vt CM = 3vtMC + 3vtCB
<=>vtCM - 3vtMC = 3vtCB -vtAC
<=>vtCM = 1/4 vtCA + 3/4 vtCB
(Mk mới học Toán 10 nên có sai thì thông cảm nha!!!)