Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tiến giang Pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 4 2023 lúc 20:41

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

b: ΔACB vuông tại A có AH là đường cao

nên AB^2=BH*BC

Trần Linh
Xem chi tiết
Thùy Trang Đoàn Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 2 2022 lúc 19:59

a: BC=10cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó:ΔABC\(\sim\)ΔHBA

Suy ra: AB/HB=BC/BA=AC/HA=10/6=5/3

c: AH=4,8cm

BH=3,6cm

Linh Nguyễn
Xem chi tiết
NGUYỄN♥️LINH.._.
11 tháng 3 2022 lúc 21:48

BẠN CÓ THỂ TRA THAY VÌ HỎI ĐC KO

 

Linh Nguyễn
11 tháng 3 2022 lúc 21:53

thui hong cần nữa, hong cíu thì thui tui tự làm liu liu 
Ảnh chế và meme manhua | Hoạt hình vui nhộn, Ảnh tường vui nhộn, Hình vui

Mạnh=_=
11 tháng 3 2022 lúc 22:03

tham khảo

undefined

Nguyễn Minh Hằng
Xem chi tiết
Kiều Vũ Linh
25 tháng 4 2023 lúc 8:05

loading...  

a) Xét hai tam giác vuông: ∆ABC và ∆HBA có:

∠B chung

⇒ ∆ABC ∽ ∆HBA (g-g)

b) ∆ABC vuông tại A (gt)

⇒ BC² = AB² + AC² (Pytago)

= 6² + 8²

= 100

⇒ BC = 10

Do ∆ABC ∽ ∆HBA (cmt)

⇒ AC/AH = BC/AB

⇒ AH = AB.AC/BC

= 6.8/10

= 4,8 (cm)

∆ABH vuông tại H

⇒ AB² = AH² + BH² (Pytago)

⇒ BH² = AB² - AH²

= 6² - (4,8)²

= 12,96

⇒ BH = 3,6 (cm)

Chiến Hoàng
25 tháng 4 2023 lúc 8:02

 

a) Ta có:

 

- Góc A của tam giác ABC là góc vuông, nên ta có thể tính được độ dài đoạn thẳng AH bằng cách sử dụng định lí Pythagoras: AH = sqrt(AB^2 + AC^2) = sqrt(6^2 + 8^2) = 10.

 

- Góc A của tam giác ABC cũng là góc giữa đường cao AH và cạnh huyền BC, nên ta có thể tính được tỉ số giữa độ dài đoạn thẳng AH và độ dài cạnh huyền BC: AH/BC = AC/AB = 8/6 = 4/3.

 

- Từ tỉ số này, ta có thể suy ra rằng tam giác ABC đồng dạng với tam giác HBA (vì cả hai tam giác có cùng một góc và tỉ số giữa các cạnh tương ứng bằng nhau).

 

b) Để tính độ dài các cạnh BC, AH, BH, ta có thể sử dụng các công thức sau:

 

- Độ dài cạnh BC: BC = AB/AC * AH = 6/8 * 10 = 15/2 = 7.5.

 

- Độ dài đoạn thẳng BH: BH = sqrt(AH^2 - AB^2) = sqrt(10^2 - 6^2) = 8.

 

- Độ dài đoạn thẳng AH đã được tính ở trên: AH = 10.

 

Vậy độ dài các cạnh BC, AH, BH lần lượt là 7.5cm, 10cm, 8cm.

Võ Phượng Võ
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 5 2021 lúc 21:52

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

Nguyễn Lê Phước Thịnh
1 tháng 5 2021 lúc 21:53

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

Nguyễn Lê Phước Thịnh
1 tháng 5 2021 lúc 21:54

b) Ta có: ΔHBA\(\sim\)ΔABC(cmt)

nên \(\dfrac{AH}{CA}=\dfrac{AB}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AH}{8}=\dfrac{6}{10}=\dfrac{3}{5}\)

\(\Leftrightarrow AH=\dfrac{3\cdot8}{5}=\dfrac{24}{5}=4,8\left(cm\right)\)

Vậy: AH=4,8cm

Thắng Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 7 2023 lúc 21:53

loading...

Napkin ( Fire Smoke Team...
Xem chi tiết
Napkin ( Fire Smoke Team...
Xem chi tiết
๖²⁴ʱTú❄⁀ᶦᵈᵒᶫ
20 tháng 3 2020 lúc 14:52

a, \(\Delta\) HBA và \(\Delta\) ABC:

^B - chung

^H = ^A= 900 => tg HBA đồng dạng ABC.

b, Vì tam giác BHA đồng dạng tg ABC:

=> \(\frac{AB}{HB}=\frac{BC}{AB}\Rightarrowđpcm\)

c, ADTC tia phân giác:

\(\Rightarrow\frac{AB}{AC}=\frac{BI}{IC}\Rightarrow\frac{BI}{AB}=\frac{IC}{AC}\)

ADTC dãy tỉ số bằng nhau 

\(\frac{BI}{AB}=\frac{IC}{AC}=\frac{BI+IC}{AB+AC}=\frac{BC}{AB+AC}=\frac{10}{6}+8=\frac{5}{7}\)

\(\Leftrightarrow\hept{\begin{cases}BI=\frac{5}{7}.6=4,3\\IC=\frac{5}{7}.8=5,7\end{cases}}\)

Khách vãng lai đã xóa