a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
b) Ta có: ΔHBA\(\sim\)ΔABC(cmt)
nên \(\dfrac{AH}{CA}=\dfrac{AB}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AH}{8}=\dfrac{6}{10}=\dfrac{3}{5}\)
\(\Leftrightarrow AH=\dfrac{3\cdot8}{5}=\dfrac{24}{5}=4,8\left(cm\right)\)
Vậy: AH=4,8cm
c) Sửa đề: Cm \(AB^2=BC\cdot BH\)
Ta có: ΔHBA\(\sim\)ΔABC(cmt)
nên \(\dfrac{HB}{AB}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BH\cdot BC\)(Đpcm)