Chứng minh bất đảng thức
a\(a^2+b^2+c^2+\dfrac{3}{4}\ge a-b-c\)
chứng minh các bất đẳng thức
a/ \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)
c/ \(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
b/ \(\dfrac{a^4+b^4}{2}\ge\left(\dfrac{a+b}{2}\right)^4\)
Lời giải:
Sử dụng pp biến đổi tương đương:
a) \(\frac{a^2+b^2}{2}\geq \left(\frac{a+b}{2}\right)^2\)
\(\Leftrightarrow \frac{a^2+b^2}{2}\geq \frac{(a+b)^2}{4}\)
\(\Leftrightarrow 4(a^2+b^2)\geq 2(a+b)^2\Leftrightarrow 4(a^2+b^2)\geq 2(a^2+2ab+b^2)\)
\(\Leftrightarrow 2(a^2+b^2)\geq 4ab\Leftrightarrow 2(a^2+b^2-2ab)\geq 0\)
\(\Leftrightarrow 2(a-b)^2\geq 0\) (luôn đúng)
Do đó ta có đpcm. Dấu bằng xẩy ra khi $a=b$
c)
\(\frac{a^2+b^2+c^2}{3}\geq \left(\frac{a+b+c}{3}\right)^2\) \(\Leftrightarrow \frac{a^2+b^2+c^2}{3}\geq \frac{(a+b+c)^2}{9}\)
\(\Leftrightarrow 3(a^2+b^2+c^2)\geq (a+b+c)^2\)
\(\Leftrightarrow 3(a^2+b^2+c^2)\geq a^2+b^2+c^2+2(ab+bc+ac)\)
\(\Leftrightarrow 2(a^2+b^2+c^2)\geq 2(ab+bc+ac)\)
\(\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)\geq 0\)
\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2\geq 0\) (luôn đúng)
Do đó ta có đpcm. Dấu bằng xảy ra khi $a=b=c$
b) \(\frac{a^4+b^4}{2}\geq \left(\frac{a+b}{2}\right)^4\)
Áp dụng 2 lần BĐT phần a: \(\frac{a^4+b^4}{2}\geq \left(\frac{a^2+b^2}{2}\right)^2(1)\)
Và: \(\frac{a^2+b^2}{2}\geq \left(\frac{a+b}{2}\right)^2\Rightarrow \left(\frac{a^2+b^2}{2}\right)^2\geq \left(\frac{a+b}{2}\right)^4(2)\)
Từ \((1); (2)\Rightarrow \frac{a^4+b^4}{2}\geq \left(\frac{a+b}{2}\right)^4\) (đpcm)
Dấu bằng xảy ra khi \(a=b\)
Chứng minh bất đẳng thức:
\(a^{^{ }2}+b^2+c^2+\dfrac{3}{4}\ge a+b+c\)
Ta có: \(a^2+\dfrac{1}{4}\ge a\)
Tương tự: \(\left\{{}\begin{matrix}b^2+\dfrac{1}{4}\ge b\\c^2+\dfrac{1}{4}\ge c\end{matrix}\right.\)
Cộng 3 cái vế theo vế ta được ĐPCM
chứng minh bất đẳng thức
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\ge\dfrac{3}{2}\)với a ≥ b ≥ c > 0
Ta có: BĐT\(\Leftrightarrow\dfrac{a}{a+b}-\dfrac{1}{2}+\dfrac{b}{b+c}-\dfrac{1}{2}+\dfrac{c}{c+a}-\dfrac{1}{2}\ge0\)
\(\Leftrightarrow\dfrac{2a-\left(a+b\right)}{2\left(a+b\right)}+\dfrac{2b-\left(b+c\right)}{2\left(b+c\right)}+\dfrac{2c-\left(c+a\right)}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2\left(a+b\right)}+\dfrac{b-c}{2\left(b+c\right)}+\dfrac{c-a}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2\left(a+b\right)}+\dfrac{b-a+a-c}{2\left(b+c\right)}+\dfrac{c-a}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2}\left(\dfrac{1}{a+b}-\dfrac{1}{b+c}\right)+\dfrac{a-c}{2}\left(\dfrac{1}{b+c}-\dfrac{1}{c+a}\right)\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2}\left(\dfrac{c-a}{\left(a+b\right)\left(b+c\right)}+\dfrac{a-c}{\left(b+c\right)\left(c+a\right)}\right)\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\) (đúng)
Vậy BĐT luôn đúng với \(a\ge b\ge c>0\)
Chứng minh bất đẳng thức : \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\ge\dfrac{3}{2}\) vs \(a\ge b\ge c>0\)
Ta có: \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\ge\dfrac{a}{2b}+\dfrac{b}{2c}+\dfrac{c}{2a}=\dfrac{1}{2}\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
\(\ge\dfrac{1}{2}.3=\dfrac{3}{2}\) ( BĐT AM - GM )
Dấu " = " khi a = b = c
\(\Rightarrowđpcm\)
BĐT\(\Leftrightarrow\dfrac{a}{a+b}-\dfrac{1}{2}+\dfrac{b}{b+c}-\dfrac{1}{2}+\dfrac{c}{c+a}-\dfrac{1}{2}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2\left(a+b\right)}+\dfrac{b-c}{2\left(b+c\right)}+\dfrac{c-a}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2\left(a+b\right)}+\dfrac{b-a+a-c}{2\left(b+c\right)}+\dfrac{c-a}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2}\left(\dfrac{1}{a+b}-\dfrac{1}{b+c}\right)+\dfrac{a-c}{2}\left(\dfrac{1}{b+c}-\dfrac{1}{c+a}\right)\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2}\cdot\dfrac{c-a}{\left(a+b\right)\left(b+c\right)}+\dfrac{a-c}{2}\cdot\dfrac{a-b}{\left(b+c\right)\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2}\left(\dfrac{c-a}{\left(a+b\right)\left(b+c\right)}+\dfrac{a-c}{\left(b+c\right)\left(c+a\right)}\right)\ge0\)
\(\Leftrightarrow\dfrac{a-b}{2}\cdot\dfrac{\left(c-a\right)\left(c+a\right)+\left(a-c\right)\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)(luôn đúng)
\(\Rightarrowđpcm\)
chứng minh bất đẳng thức:\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\ge\dfrac{3}{2}\) với\(a\ge b\ge c>0\)
tham khảo tại đây-_-
Câu hỏi của Nguyễn Thị Bình Yên - Toán lớp 8 | Học trực tuyến
chứng minh bất đẳng thức
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\ge\dfrac{3}{2}\) với \(a\ge b\ge c>0\)
Tham khảo ở đây có đủ các cách cho bạn chọn lựa
Từ "Siêu tốc thần sầu" đến "tập thể dục" tha hồ luyện
!!!
https://hoc24.vn/hoi-dap/question/196314.html
For \(a\geq b\geq c>0\) we obtain:
\(\sum_{cyc}\frac{a}{a+b}-\frac{3}{2}=\sum_{cyc}\left(\frac{a}{a+b}-\frac{1}{2}\right)=\sum_{cyc}\frac{a-b}{2(a+b)}\)
\(=\sum_{cyc}\frac{(a-b)(c^2+ab+ac+bc)}{2\prod\limits_{cyc}(a+b)}=\sum_{cyc}\frac{c^2a-c^2b}{2\prod\limits_{cyc}(a+b)}\)
\(=\sum_{cyc}\frac{a^2b-a^2c}{2\prod\limits_{cyc}(a+b)}=\frac{(a-b)(a-c)(b-c)}{2\prod\limits_{cyc}(a+b)}\geq0\)
Cho 3 số thực dương a, b, c. Chứng minh bất đẳng thức sau:
\(\dfrac{b+c}{a^2}+\dfrac{c+a}{b^2}+\dfrac{a+b}{c^2}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)
Hay 1 cách khác :AM-GM
\(\dfrac{b}{a^2}+\dfrac{c}{a^2}+\dfrac{1}{b}+\dfrac{1}{c}\ge4\sqrt[4]{\dfrac{1}{a^4}}=\dfrac{4}{a}\)
Tương tự là ta có ngay đpcm
Một cách đơn giản nhất tương đương ( hay còn gọi là SOS)
\(BĐT\Leftrightarrow\sum\dfrac{b+c-2a}{a^2}\ge0\)
\(\Leftrightarrow\sum\left(\dfrac{b-a}{a^2}+\dfrac{c-a}{a^2}\right)\ge0\)
Nhóm lại: \(\Leftrightarrow\sum\left(\dfrac{a-b}{b^2}+\dfrac{b-a}{a^2}\right)\ge0\)
\(\Leftrightarrow\sum\left(a-b\right)^2.\left(\dfrac{a+b}{a^2b^2}\right)\ge0\)(đúng)
Vậy BĐT được chứng minh.
Dấu = xảy ra khi a=b=c
Chứng minh bất đẳng thức :
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\) với a,b,c > 0
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c\)
Chứng minh các bất đẳng thức sau :
1. a3 - 3a +4 \(\ge\) b3 - 3b ( a\(\ge\)b)
2. \(\dfrac{a^3+b^3}{2}\ge\left(\dfrac{a+b}{2}\right)^3\) ( với a+b>0 )
3. \(\dfrac{a^3+b^3+c^3}{a+b+c}\ge\dfrac{3abc}{a+b+c}\) ( với a+b+c\(\ne\)0 )
3: =>a^3+b^3+c^3>=3abc
=>(a+b)^3+c^3-3ab(a+b)-3abc>=0
=>(a+b+c)(a^2+b^2+c^2-ab-bc-ac)>=0
=>a^2+b^2+c^2-ab-bc-ac>=0
=>2a^2+2b^2+2c^2-2ab-2bc-2ac>=0
=>(a-b)^2+(a-c)^2+(b-c)^2>=0(luôn đúng)