Tính giá trị bthuc
\(\sqrt{6-4\sqrt{ }2}+\sqrt{22-12\sqrt{ }2}\)
Rút gọn các bthuc sau:
\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)
\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}=2-\sqrt{3}+\sqrt{3-2\sqrt{3}+1}\left(\text{vì }2>\sqrt{3}\right)\)
\(=2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}=2-\sqrt{3}+\sqrt{3}-1\left(\text{vì }\sqrt{3}>1\right)\)
\(=1\)
\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}=\sqrt{9-2.3\sqrt{6}+6}+\sqrt{\left(2\sqrt{6}\right)^2-2.2\sqrt{6}.3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}=3-\sqrt{6}+2\sqrt{6}-3\left(\text{vì }3>\sqrt{6};2\sqrt{6}>3\right)\)
\(=\sqrt{6}\)
a/
\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=2-\sqrt{3}+\sqrt{3}-1\)
\(=1\)
b/
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(\sqrt{24}-3\right)^2}\)
\(=3-\sqrt{6}+\sqrt{24}-3\)
\(=-\sqrt{6}+2\sqrt{6}=\sqrt{6}\)
tick cho mình nha
Tính giá trị các biểu thức:
a.\(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\sqrt{3}\)
b.\(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
c.\(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)3\sqrt{6}\)
d.\(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
a) Ta có: \(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\cdot\sqrt{3}\)
\(=\left(7\cdot4\sqrt{3}+3\cdot3\sqrt{3}-2\cdot2\sqrt{3}\right)\cdot\sqrt{3}\)
\(=33\sqrt{3}\cdot\sqrt{3}\)
=99
b) Ta có: \(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
\(=\left(12\cdot5\sqrt{2}-8\cdot10\sqrt{2}+7\cdot15\sqrt{2}\right):\sqrt{10}\)
\(=\dfrac{85\sqrt{2}}{\sqrt{10}}=\dfrac{85}{\sqrt{5}}=17\sqrt{5}\)
c) Ta có: \(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\cdot2\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+3\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=36-36\sqrt{2}+18\sqrt{3}\)
d) Ta có: \(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
\(=3\cdot\sqrt{75\sqrt{2}}+5\cdot\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)
\(=3\cdot5\sqrt{2}\cdot\sqrt{\sqrt{2}}+4\sqrt{3}\sqrt{\sqrt{2}}\)
\(=15\sqrt{\sqrt{8}}+4\sqrt{\sqrt{18}}\)
a,=\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right).\sqrt{3}\)
\(=28.3+9.3-4.3=99\)
b,\(=\left(60\sqrt{2}-80\sqrt{2}+175\sqrt{2}\right):\sqrt{10}\)
\(=155\sqrt{2}:\sqrt{10}=\dfrac{155}{\sqrt{5}}\)
d,Ta có:\(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
\(=3\sqrt{75\sqrt{2}}+5\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)
\(=15\sqrt{3\sqrt{2}}+20\sqrt{3\sqrt{2}}-16\sqrt{3\sqrt{2}}\)
\(=19\sqrt{3\sqrt{2}}\)
Bài 3: Thực hiện các phép tính sau:
a) \(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
b) \(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)
c) \(\sqrt{6-4\sqrt{2}}+\)\(\sqrt{22-12\sqrt{2}}\)
hộ mk với
a) \(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
\(=2\sqrt{5}+2+\sqrt{5}-2\)
\(=3\sqrt{5}\)
b) \(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)
\(=3-2\sqrt{2}+2\sqrt{2}-1\)
=2
c) \(\sqrt{6-4\sqrt{2}}+\sqrt{22-12\sqrt{2}}\)
\(=2-\sqrt{2}+3\sqrt{2}-2\)
\(=2\sqrt{2}\)
tính giá trị biểu thức
a, \(\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
b, \(\sqrt{12-6\sqrt{3}}\)
c, \(\sqrt{6-4\sqrt{2}+\sqrt{22-12\sqrt{2}}}\)
a) \(\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{6+2\sqrt{3}-2}\)
\(=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}+1\)
b) \(\sqrt{12-6\sqrt{3}}\)
\(=\sqrt{9-2\cdot3\cdot\sqrt{3}+3}\)
\(=\sqrt{\left(\sqrt{9}-\sqrt{3}\right)^2}\)
\(=3-\sqrt{3}\)
c) \(\sqrt{6-4\sqrt{2}+\sqrt{22-12\sqrt{2}}}\)
\(=\sqrt{6-4\sqrt{2}+\sqrt{\left(\sqrt{18}-2\right)^2}}\)
\(=\sqrt{6-4\sqrt{2}+\sqrt{18}-2}\)
\(=\sqrt{4-4\sqrt{2}+3\sqrt{2}}\)
\(=\sqrt{4-\sqrt{2}}\)
Tính giá trị biểu thức:
\(A=\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{4+2\sqrt{3}}\)
\(A=\sqrt{6+\sqrt{24}+\sqrt{12}+\sqrt{8}}-\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{6+2\sqrt{6}+2\sqrt{3}+2\sqrt{2}}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{\left(1+\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{3}+1\)
\(=1+\sqrt{2}+\sqrt{3}+\sqrt{3}+1=\sqrt{2}+2\sqrt{3}+2\)
Tính giá trị của biểu thức:
a)A=\(\sqrt{\left(2-\sqrt{5}\right)^2}\) +\(\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)
b)B=\(\sqrt{6+2\sqrt{5}}\) - \(\sqrt{6-2\sqrt{5}}\)
c)C=\(\sqrt{17+12\sqrt{2}}\) + \(\sqrt{17-12\sqrt{2}}\)
a) A= \(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)
Vì \(\left\{{}\begin{matrix}2=\sqrt{4}< \sqrt{5}\\2\sqrt{2}=\sqrt{8}>\sqrt{5}\end{matrix}\right.\) nên A = \(\sqrt{\left(\sqrt{5}-2\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)
= \(\sqrt{5}-2+2\sqrt{2}-\sqrt{5}\)
= \(2\left(\sqrt{2}-1\right)\)
b) B = \(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\) (B > 0)
Ta có:
B2 = \(6+2\sqrt{5}-2\sqrt{\left(6+2\sqrt{5}\right)\left(6-2\sqrt{5}\right)}+6-2\sqrt{5}\)
= \(12-2\sqrt{36-20}\)
= \(12-8\)
= \(4\)
\(\Rightarrow\) B =\(\pm2\) nhưng vì B > 0 nên B = 2
Vậy B = 2
c) C = \(\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\) (C > 0)
Ta có:
C2 = \(17+12\sqrt{2}+2\sqrt{\left(17+12\sqrt{2}\right)\left(17-12\sqrt{2}\right)}+\left(17-12\sqrt{2}\right)\)
= \(34+2\sqrt{289-288}\)
= \(34+2\)
= \(36\)
\(\Rightarrow C=\pm6\) nhưng vì C > 0 nên C = 6
Nếu Sina = \(\dfrac{\sqrt{3}-1}{4}\) thì 2.Cos a có giá trị bằng
A. \(\dfrac{\sqrt{12+\sqrt{3}}}{2}\) B. \(\dfrac{\sqrt{12+2\sqrt{3}}}{2}\) C.\(\dfrac{\sqrt{6-\sqrt{3}}}{4}\) D.\(\dfrac{\sqrt{6+2\sqrt{3}}}{4}\)
\(\cos\alpha=\sqrt{1-\sin^2\alpha}=\sqrt{1-\left(\dfrac{\sqrt{3}-1}{4}\right)^2}=\dfrac{\sqrt{12+2\sqrt{3}}}{4}\)
\(\Rightarrow2\cos\alpha=\dfrac{\sqrt{12+2\sqrt{3}}}{2}\). Chọn B.
tính giá trị biểu thức
a)\(\sqrt{3+2\sqrt{2}}+\sqrt{\left(\sqrt{2}-2\right)^2}\)
b)\(\dfrac{1}{5}\sqrt{50}-2\sqrt{96}-\dfrac{\sqrt{30}}{\sqrt{15}}+12\sqrt{\dfrac{1}{6}}\)
c)\(\left(\dfrac{5-\sqrt{5}}{\sqrt{5}}-2\right)\left(\dfrac{4}{1+\sqrt{5}}+4\right)\)
a) \(\sqrt{3+2\sqrt{2}}+\sqrt{\left(\sqrt{2}-2\right)^2}\)
\(=\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}\cdot1+1^2}+\left|\sqrt{2}-2\right|\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}-\left(\sqrt{2}-2\right)\)
\(=\left|\sqrt{2}+1\right|-\sqrt{2}+2\)
\(=\sqrt{2}+1-\sqrt{2}+2\)
\(=3\)
b) \(\dfrac{1}{5}\sqrt{50}-2\sqrt{96}-\dfrac{\sqrt{30}}{\sqrt{15}}+12\sqrt{\dfrac{1}{6}}\)
\(=\dfrac{1}{5}\cdot5\sqrt{2}-2\cdot4\sqrt{6}-\sqrt{\dfrac{30}{15}}+\sqrt{\dfrac{144}{6}}\)
\(=\sqrt{2}-8\sqrt{6}-\sqrt{2}+2\sqrt{6}\)
\(=-8\sqrt{6}+2\sqrt{6}\)
\(=-6\sqrt{6}\)
c) \(\left(\dfrac{5-\sqrt{5}}{\sqrt{5}}-2\right)\left(\dfrac{4}{1+\sqrt{5}}+4\right)\)
\(=\left[\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}}-2\right]\left[\dfrac{4\left(1-\sqrt{5}\right)}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+4\right]\)
\(=\left(\sqrt{5}-1-2\right)\left(\dfrac{4\left(1-\sqrt{5}\right)}{1-5}+4\right)\)
\(=\left(\sqrt{5}-3\right)\left(\sqrt{5}-1+4\right)\)
\(=\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)\)
\(=\left(\sqrt{5}\right)^2-3^2\)
\(=-4\)
a) \(\sqrt[]{3+2\sqrt[]{2}}+\sqrt[]{\left(\sqrt[]{2}-2\right)^2}\)
\(=\sqrt[]{2+2\sqrt[]{2}.1+1}+\left|\sqrt[]{2}-2\right|\)
\(=\sqrt[]{\left(\sqrt[]{2}+1\right)^2}+\left(2-\sqrt[]{2}\right)\) \(\left(\left(\sqrt[]{2}\right)^2=2< 2^2=4\right)\)
\(=\left|\sqrt[]{2}+1\right|+2-\sqrt[]{2}\)
\(=\sqrt[]{2}+1+2-\sqrt[]{2}\)
\(=3\)
Tính giá trị biểu thức:\(\frac{\sqrt{5+\sqrt{3}}+\sqrt{5-\sqrt{3}}}{\sqrt{5\sqrt{22}}}\)+\(\sqrt{11-6\sqrt{2}}\)