Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lê thị vân chi
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2021 lúc 19:11

Ta có: \(C=\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4}+...+\dfrac{2006}{2007}}{\dfrac{2006}{1}+\dfrac{2005}{2}+\dfrac{2004}{3}+...+\dfrac{1}{2006}}\)

\(=\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4}+...+\dfrac{2006}{2007}}{1+\left(1+\dfrac{2005}{2}\right)+\left(1+\dfrac{2004}{3}\right)+...+\left(1+\dfrac{1}{2006}\right)}\)

\(=\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4}+...+\dfrac{2006}{2007}}{\dfrac{2007}{2007}+\dfrac{2007}{2}+\dfrac{2007}{3}+...+\dfrac{2007}{2006}}\)

\(=\dfrac{2006}{2007}\)

Baekhyun
Xem chi tiết
Bình Lê
13 tháng 8 2017 lúc 10:11

\(b,\) Ta có:

\(\dfrac{1}{n\sqrt{n-1}+\left(n-1\right)\sqrt{n}}\\ =\dfrac{1}{\sqrt{n}.\sqrt{n-1}\left(\sqrt{n}+\sqrt{n-1}\right)}\\ =\dfrac{\sqrt{n}}{\sqrt{n}.\sqrt{n-1}}-\dfrac{\sqrt{n-1}}{\sqrt{n}.\sqrt{n-1}}\\ =\dfrac{1}{\sqrt{n-1}}-\dfrac{1}{\sqrt{n}}\)

Thay:

\(n=2\) \(\Leftrightarrow\dfrac{1}{2\sqrt{1}+1\sqrt{2}}=\dfrac{1}{1}-\dfrac{1}{\sqrt{2}}\)

\(n=3\Leftrightarrow\dfrac{1}{3\sqrt{2}+2\sqrt{3}}=\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}\)

\(...\)

\(n=2007\Leftrightarrow\dfrac{1}{2007\sqrt{2006}+2006\sqrt{2007}}=\dfrac{1}{\sqrt{2006}}-\dfrac{1}{\sqrt{2007}}\\ \)

Bình Lê
13 tháng 8 2017 lúc 10:16

Tiếp phần b ( do máy lag) :3

Cộng 2 vế với nhau, ta có:

\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2007\sqrt{2006}+2006\sqrt{2007}}\\ =1-\dfrac{1}{\sqrt{2007}}\)

nguyễn thế minh
21 tháng 8 2017 lúc 8:21

a) A=\(\dfrac{1}{\sqrt{3}+\sqrt{5}}\)+\(\dfrac{1}{\sqrt{5}+\sqrt{7}}\)+\(\dfrac{1}{\sqrt{7}+\sqrt{9}}\)+...+\(\dfrac{1}{\sqrt{97}+\sqrt{99}}\)

=\(\dfrac{\sqrt{5}-\sqrt{3}}{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)}\)+\(\dfrac{\sqrt{7}-\sqrt{5}}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{5}\right)}\)+\(\dfrac{\sqrt{9}-\sqrt{7}}{\left(\sqrt{7}+\sqrt{9}\right)\left(\sqrt{9}-\sqrt{7}\right)}\)+...+\(\dfrac{\sqrt{99}-\sqrt{97}}{\left(\sqrt{99}+\sqrt{97}\right)\left(\sqrt{99}-\sqrt{97}\right)}\)

=\(\dfrac{\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{5}+\sqrt{9}-\sqrt{7}+...+\sqrt{99}-\sqrt{97}}{2}\)

=\(\dfrac{\sqrt{99}-\sqrt{3}}{2}\)

vậy A=\(\dfrac{\sqrt{99}-\sqrt{3}}{2}\)

Trần Phương Thảo
Xem chi tiết
Chàng trai lạnh lùng
4 tháng 8 2017 lúc 9:45

số số hạng của A là :

( 2007 - 3 ) : 3 + 1 = 669 ( số )

tổng A là :

( 2007 + 3 ) . 669 : 2 = 672345

B = \(\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4}+...+\dfrac{2006}{2007}}{\dfrac{2006}{1}+\dfrac{2005}{2}+\dfrac{2004}{3}+...+\dfrac{1}{2006}}\)

B = \(\dfrac{2006.\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}\right)}{\left(\dfrac{2005}{2}+1\right)+\left(\dfrac{2004}{3}+1\right)+...+\left(\dfrac{1}{2006}+1\right)+1}\)

B = \(\dfrac{2006.\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}\right)}{\dfrac{2007}{2}+\dfrac{2007}{3}+...+\dfrac{2007}{2006}+\dfrac{2007}{2007}}\)

B = \(\dfrac{2006.\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}\right)}{2007.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2006}+\dfrac{1}{2007}\right)}\)

B = \(\dfrac{2006}{2007}\)

Nguyên
4 tháng 8 2017 lúc 9:56

\(A=3+6+9+12+...+2007\)

\(A=\dfrac{\left(2007+3\right)\left(\dfrac{2007-3}{3}+1\right)}{2}\)

\(A=\dfrac{2010.669}{2}=672235\)

\(B=\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4}+...+\dfrac{2006}{2007}}{\dfrac{2006}{1}+\dfrac{2005}{2}+\dfrac{2004}{3}+...+\dfrac{1}{2006}}\)

\(B=\dfrac{2006\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}\right)}{2006+\left(\dfrac{2005}{2}+1\right)+\left(\dfrac{2004}{3}+1\right)+...\left(\dfrac{1}{2006}+1\right)-2005}\)

\(B=\dfrac{2006\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}\right)}{\dfrac{2007}{2007}+\dfrac{2007}{2}+\dfrac{2005}{3}+...+\dfrac{2007}{2006}}\)

\(B=\dfrac{2006\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}\right)}{2007\left(\dfrac{1}{2007}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}\right)}=\dfrac{2006}{2007}\)

tik mik nha !!!

Chàng trai lạnh lùng
4 tháng 8 2017 lúc 10:00

Nguyễn copy mình à

Ngô Ngọc Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 6 2022 lúc 20:31

\(C=\dfrac{2006\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}\right)}{\left(1+\dfrac{2005}{2}\right)+\left(1+\dfrac{2004}{3}\right)+...+\left(1+\dfrac{1}{2006}\right)+1}\)

\(=\dfrac{2006\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}\right)}{\dfrac{2007}{2}+\dfrac{2007}{3}+...+\dfrac{2007}{2007}}=\dfrac{2006}{2007}\)

trung phamviet
Xem chi tiết
WW
Xem chi tiết
 Mashiro Shiina
6 tháng 3 2018 lúc 23:42

Đặt: \(L_2=\dfrac{2007}{1}+\dfrac{2006}{2}+\dfrac{2005}{3}+...+\dfrac{2}{2006}+\dfrac{1}{2007}\)

\(L_2=1+\left(\dfrac{2006}{2}+1\right)+\left(\dfrac{2005}{3}+1\right)+...+\left(\dfrac{2}{2006}+1\right)+\left(\dfrac{1}{2007}+1\right)\)

\(L_2=\dfrac{2008}{2008}+\dfrac{2008}{2}+\dfrac{2008}{3}+...+\dfrac{2008}{2006}+\dfrac{2008}{2007}\)

\(L_2=2008\left(\dfrac{1}{2}+\dfrac{1}{3}+..+\dfrac{1}{2006}+\dfrac{1}{2007}+\dfrac{1}{2008}\right)\)

\(\dfrac{L_1}{L_2}=\dfrac{1}{2008}\)

Nguyễn acc 2
Xem chi tiết
Dr.STONE
30 tháng 1 2022 lúc 16:50

- Mình dùng cách lớp 8 để làm câu b được không :)?

Dr.STONE
30 tháng 1 2022 lúc 16:56

- Tham khảo câu b:

https://olm.vn/hoi-dap/tim-kiem?q=+++++++++++A=2006%5E2005+1/2006%5E2006+1B=2006%5E2006+1/2006%5E2007+1so+s%C3%A1nh+A+v%C3%A0+B&id=520258

Nguyễn acc 2
30 tháng 1 2022 lúc 16:57

:< dễ lém á , mng giúp mìn ii 

Baekhyun
Xem chi tiết
Khánh Linh
Xem chi tiết
Đạt Trần
14 tháng 7 2017 lúc 9:03

Ta có:

\(2006A=\dfrac{2006^{2007}+2016}{2006^{2007}+1}=1+\dfrac{2005}{2006^{2007}+1}\)

\(2006B=\dfrac{2006^{2006}+2006}{2006^{2006}+1}=1+\dfrac{2005}{2006^{2006}+1}\)

Do \(\dfrac{2005}{2006^{2006}+1}>\dfrac{2005}{2006^{2007}+1}\Rightarrow1+\dfrac{2005}{2006^{2006}+1}>1+\dfrac{2005}{2006^{2007}+1}\)

\(\Rightarrow2006A< 2006B\Rightarrow A< B\)

 Mashiro Shiina
14 tháng 7 2017 lúc 9:09

Mình sẽ giải cách ngắn hơn cách bạn đạt nha:

Nếu:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

\(A=\dfrac{2006^{2006}+1}{2006^{2007}+1}< 1\)

\(A< \dfrac{2006^{2006}+1+2005}{2006^{2007}+1+2005}\Rightarrow A< \dfrac{2006^{2006}+2006}{2006^{2007}+2006}\Rightarrow A< \dfrac{2006\left(2006^{2005}+1\right)}{2006\left(2006^{2006}+1\right)}\Rightarrow A< \dfrac{2006^{2005}+1}{2006^{2006}+1}=B\)\(A< B\)