Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
BoSo WF
Xem chi tiết
YangSu
12 tháng 4 2022 lúc 20:29

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

YangSu
12 tháng 4 2022 lúc 20:32

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

Tuhuyenn
Xem chi tiết
Trúc Giang
16 tháng 9 2021 lúc 9:01

a) \(3x-2\sqrt{x-1}=4\) (ĐK: x ≥ 1)

\(\Rightarrow3x-2\sqrt{x-1}-4=0\)

\(\Rightarrow3x-6-2\sqrt{x-1}+2=0\)

\(\Rightarrow3\left(x-2\right)-2\left(\sqrt{x-1}-1\right)=0\)

\(\Rightarrow3\left(x-2\right)-2.\dfrac{x-2}{\sqrt{x-1}+1}=0\)

\(\Rightarrow\left(x-2\right)\left[3-\dfrac{2}{\sqrt{x-1}+1}\right]=0\)

*TH1: x = 2 (t/m)

*TH2: \(3-\dfrac{2}{\sqrt{x-1}+1}=0\)

\(\Rightarrow3=\dfrac{2}{\sqrt{x-1}+1}\)

\(\Rightarrow3\sqrt{x-1}+3=2\)

\(\Rightarrow3\sqrt{x-1}=-1\) (vô lí)

Vậy S = {2}

b) \(\sqrt{4x+1}-\sqrt{x+2}=\sqrt{3-x}\) (ĐK: \(-\dfrac{1}{4}\le x\le3\) )

\(\Rightarrow\sqrt{4x+1}-3-\sqrt{x+2}+2-\sqrt{3-x}+1=0\)

\(\Rightarrow\dfrac{4x-8}{\sqrt{4x+1}+3}-\dfrac{x-2}{\sqrt{x+2}+2}+\dfrac{x-2}{\sqrt{3-x}+1}=0\)

\(\Rightarrow\left(x-2\right)\left(\dfrac{4}{\sqrt{4x+1}+3}-\dfrac{1}{\sqrt{x+2}+2}+\dfrac{1}{\sqrt{3-x}+1}\right)=0\)

=> x = 2

 

 

 

Nguyễn Hoàng Minh
16 tháng 9 2021 lúc 9:03

\(a,3x-2\sqrt{x-1}=4\left(x\ge1\right)\\ \Leftrightarrow-2\sqrt{x-1}=4-3x\\ \Leftrightarrow4\left(x-1\right)=16-24x+9x^2\\ \Leftrightarrow9x^2-28x+20=0\\ \Leftrightarrow\left(x-2\right)\left(9x-10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=\dfrac{10}{9}\left(tm\right)\end{matrix}\right.\)

\(b,\sqrt{4x+1}-\sqrt{x+2}=\sqrt{3-x}\left(-\dfrac{1}{4}\le x\le3\right)\\ \Leftrightarrow4x+1+x+2-2\sqrt{\left(4x+1\right)\left(x+2\right)}=3-x\\ \Leftrightarrow-2\sqrt{\left(4x+1\right)\left(x+2\right)}=2-6x\\ \Leftrightarrow\sqrt{4x^2+9x+2}=3x-1\\ \Leftrightarrow4x^2+9x+2=9x^2-6x+1\\ \Leftrightarrow5x^2-15x-1=0\\ \Leftrightarrow\Delta=225+20=245\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15-\sqrt{245}}{10}=\dfrac{15-7\sqrt{5}}{10}\left(ktm\right)\\x=\dfrac{15+\sqrt{245}}{10}=\dfrac{15+7\sqrt{5}}{10}\left(tm\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{15+7\sqrt{5}}{10}\)

Tuyết Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 2 2022 lúc 15:07

b: \(\Leftrightarrow9x^2+12x+4-18x+12=9x^2\)

=>-6x+16=0

=>-6x=-16

hay x=8/3(nhận)

c: \(\Leftrightarrow\dfrac{x+1+x-1}{\left(x-1\right)\left(x+1\right)}=\dfrac{2}{x+2}\)

\(\Leftrightarrow2x\left(x+2\right)=2\left(x^2-1\right)\)

\(\Leftrightarrow2x^2+4x-2x^2+2=0\)

=>4x+2=0

hay x=-1/2(nhận)

nguyen phuong an
Xem chi tiết
Nguyễn Phương Uyên
11 tháng 3 2020 lúc 15:01

a) ( 4x - 1 ) (x - 3) - ( x - 3 ) ( 5x + 2 ) = 0 

<=>  (x - 3)(4x - 1 - 5x - 2) = 0

<=>  (x - 3)(-x - 3) = 0

<=>  x  = 3 hoặc x = -3

b) ( x + 3 ) ( x - 5 ) + ( x + 3 ) ( 3x - 4) = 0 

<=>  (x + 3)(x - 5 + 3x - 4) = 0

<=>  (x + 3)(4x - 9) = 0

<=>  x = -3 hoặc x = 9/4

c) ( x + 6 ) ( 3x - 1 )+ x2 - 36 = 0 

<=>  3x^2 + 17x - 6 + x^2 - 36 = 0

<=>  4x^2 + 17x - 42 = 0

<=>  4x^2 + 24x - 7x - 42 = 0

<=>  4x(x + 6) - 7(x + 6) = 0

<=>  (4x - 7)(x + 6) = 0

<=>  x = -6 hoặc x = 7/4

d) ( x + 4 ) ( 5x + 9 ) - x+ 16 = 0 

<=>  5x^2 + 29x + 36 - x^2 + 16 = 0

<=>  4x^2 + 29x + 52 = 0

<=>  4x^2 + 16x + 13x + 42 = 0

<=>  4x(x + 4) + 13(x + 4) = 0

<=>  (4x + 13)(x + 4) = 0

<=>  x = -13/4 và x = -4

Khách vãng lai đã xóa
Tâm3011
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 6 2023 lúc 20:30

2:

\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)

B=(x1+x2)^2-2x1x2

=3^2-2*(-7)

=9+14=23

C=căn (x1+x2)^2-4x1x2

=căn 3^2-4*(-7)=căn 9+28=căn 27

D=(x1^2+x2^2)^2-2(x1x2)^2

=23^2-2*(-7)^2

=23^2-2*49=431

D=9x1x2+3(x1^2+x2^2)+x1x2

=10x1x2+3*23

=69+10*(-7)=-1

Bình Đinh
Xem chi tiết
NGUYỄN THẾ HIỆP
25 tháng 2 2017 lúc 21:42

a, Đặt \(2^x=t,t>0\)

Pt trở thành: \(t^2-10t+16=0\Leftrightarrow\left(t-2\right)\left(t-8\right)=0\Leftrightarrow\orbr{\begin{cases}t=2\\t=8\end{cases}\left(tm\right)}\)

Nếu t=2 => x=1

nếu t=8=> x=3

Vậy x=...

b, Đặt: \(2x^2-3x-1=t\)

pt trở thành: \(t^2-3\left(t-4\right)-16=0\Leftrightarrow t^2-3t-4=0\Leftrightarrow\left(t+1\right)\left(t-4\right)=0\Leftrightarrow\orbr{\begin{cases}t=-1\\t=4\end{cases}}\)

* Nếu t=-1 <=> \(2x^2-3x-1=-1\Leftrightarrow x\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)

* Nếu t=4 <=> \(2x^2-3x-1=4\Leftrightarrow2x^2-3x-5=0\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{2}\end{cases}}\)

Vậy x=...

Nguyễn Duy Khang
Xem chi tiết
HT.Phong (9A5)
13 tháng 4 2023 lúc 10:58

a) \(5x\left(x-3\right)^2-5\left(x-1\right)^3+15\left(x-4\right)\left(x+4\right)\le10\)

\(\Leftrightarrow5x\left(x^2-6x+9\right)-5\left(x^3-3x^2+3x-1\right)+15\left(x^2-16\right)\le10\)

\(\Leftrightarrow5x^3-30x^2+45x-5x^3+15x^2-15x+5+15x^2-240\le10\)

\(\Leftrightarrow\left(5x^3-5x^3\right)-\left(30x^2-15x^2-15x^2\right)-\left(45x-15x\right)+5-240\le10\)

\(\Leftrightarrow30x-235\le10\)

\(\Leftrightarrow30x\le10+235\)

\(\Leftrightarrow30x\le245\)

\(\Leftrightarrow30x:30\le245:30\)

\(\Leftrightarrow x\le\dfrac{49}{6}\)

Vậy nghiệm của bất phương trình là: \(x\le\dfrac{49}{6}\)

b) \(\left(3x-2\right)\left(9x^2+6x+4\right)+27x\left(\dfrac{1}{3}-x\right)\left(\dfrac{1}{2}+x\right)\ge1\)

\(\Leftrightarrow27x^3-8+27x\left(\dfrac{1}{9}-x^2\right)\ge1\)

\(\Leftrightarrow27x^3-8+3x-27x^3\ge1\)

\(\Leftrightarrow\left(27x^3-27x^3\right)-8+3x\ge1\)

\(\Leftrightarrow-8+3x\ge1\)

\(\Leftrightarrow3x\ge1+8\)

\(\Leftrightarrow3x\ge9\)

\(\Leftrightarrow3x:3\ge9:3\)

\(\Leftrightarrow x\ge3\)

Vậy nghiệm của bất phương trình là \(x\ge3\)

Nguyễn Lê Phước Thịnh
13 tháng 4 2023 lúc 10:45

a: =>5x(x^2-6x+9)-5(x^3-3x^2+3x-1)+15(x^2-16)<=10

=>5x^3-30x^2+45x-5x^3+15x^2-15x+5+15x^2-240<=10

=>30x-235<=10

=>30x<=245

=>x<=49/6

b: =>27x^3-8+27x(1/9-x^2)>=1

=>27x^3-8+3x-27x^3>=1

=>3x>=9

=>x>=3

Nguyễn Lê Phương Anh
Xem chi tiết
Gao bạc tv
24 tháng 4 2020 lúc 9:51

khó quá

Khách vãng lai đã xóa
Nguyễn Anh Khôi
24 tháng 4 2020 lúc 9:51

khó gì fan gao bạc

Khách vãng lai đã xóa
⭐ A🤔G⭐ Nam lầy
24 tháng 4 2020 lúc 9:55

khó quá

Khách vãng lai đã xóa
ThanhNghiem
Xem chi tiết
Mai Trung Hải Phong
30 tháng 12 2023 lúc 15:19

a)

\(\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)

\(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x+1\right)\left(x-1\right)\)

\(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[9x^2-4-\left[\left(3x+2\right)\left(x-1\right)\right]\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left[9x^2-4-\left(3x^2-3x+2x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-3x^2+3x-2x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(6x^2+x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\6x^2+x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(2x-1\right)\left(3x+2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-2}{3}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{1;\dfrac{-2}{3};\dfrac{1}{2}\right\}\)

b)

\(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)

\(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)

\(\Leftrightarrow2x^2-2x=x^2-2x+3\)

\(\Leftrightarrow3x^2=3\)

\(\Leftrightarrow x^2=1\)

\(\Leftrightarrow x=\left(\pm1\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy \(x\in\left\{1;-1\right\}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 23:50

a) \(2{x^2} + 3x + 1 \ge 0\)

Tam thức bậc hai \(f\left( x \right) = 2{x^2} + 3x + 1\) có 2 nghiệm phân biệt \(x =  - 1,x = \frac{{ - 1}}{2}\)

hệ số \(a = 2 > 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \le  - 1\\x \ge  - \frac{1}{2}\end{array} \right.\)

Vậy tập nghiệm của bất phương trình là \(\left( { - \infty ; - 1} \right] \cup \left[ { - \frac{1}{2}; + \infty } \right)\)

b) \( - 3{x^2} + x + 1 > 0\)

Tam thức bậc hai \(f\left( x \right) =  - 3{x^2} + x + 1\) có 2 nghiệm phân biệt \(x = \frac{{1 - \sqrt {13} }}{6},x = \frac{{1 + \sqrt {13} }}{6}\)

Hệ số \(a =  - 3 < 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) > 0\)\( \Leftrightarrow \frac{{1 - \sqrt {13} }}{6} < x < \frac{{1 + \sqrt {13} }}{6}\)

Vậy tập nghiệm của bất phương trình là \(\left( {\frac{{1 - \sqrt {13} }}{6};\frac{{1 + \sqrt {13} }}{6}} \right)\)

c) \(4{x^2} + 4x + 1 \ge 0\)

Tam thức bậc hai \(f\left( x \right) = 4{x^2} + 4x + 1\) có nghiệm duy nhất \(x = \frac{{ - 1}}{2}\)

hệ số \(a = 4 > 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) \ge 0 \Leftrightarrow x \in \mathbb{R}\)

Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\)

d) \( - 16{x^2} + 8x - 1 < 0\)

Tam thức bậc hai \(f\left( x \right) =  - 16{x^2} + 8x - 1\) có nghiệm duy nhất \(x = \frac{1}{4}\)

hệ số \(a =  - 16 < 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) < 0 \Leftrightarrow x \ne \frac{1}{4}\)

Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\backslash \left\{ {\frac{1}{4}} \right\}\)

e) \(2{x^2} + x + 3 < 0\)

Ta có \(\Delta  = {1^2} - 4.2.3 =  - 23 < 0\) và có \(a = 2 > 0\)

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \(2{x^2} + x + 3\) mang dấu “-” là \(\emptyset \)

Vậy tập nghiệm của bất phương trình \(2{x^2} + x + 3 < 0\) là \(\emptyset \)

g) \( - 3{x^2} + 4x - 5 < 0\)

Tam thức bậc hai \(f\left( x \right) =  - 3{x^2} + 4x - 5\) có \(\Delta ' = {2^2} - \left( { - 3} \right).\left( { - 5} \right) =  - 11 < 0\) và có \(a =  - 3 < 0\)

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \( - 3{x^2} + 4x - 5\) mang dấu “-” là \(\mathbb{R}\)

Vậy tập nghiệm của bất phương trình \( - 3{x^2} + 4x - 5 < 0\) là \(\mathbb{R}\)