Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
subjects
Xem chi tiết
Nguyễn Bá Minh Nhật
26 tháng 12 2022 lúc 14:50

đợi tý

when the imposter is sus
28 tháng 12 2022 lúc 21:07

a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min

Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)

\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)

Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)

Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0

b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min

Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)

\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)

Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)

Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0

Câu c) và d) thì tự làm, ko có rảnh =))))

Dương đình minh
18 tháng 8 2023 lúc 16:46

Đã trả lời rồi còn độ tí đồ ngull

Kim Khánh Linh
Xem chi tiết
Lê Đức Lương
17 tháng 5 2021 lúc 19:21

1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)

Thay \(x=\frac{1}{9}\) vào A ta có:

\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)

2. \(B=...\)

    \(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

    \(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

     \(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{\sqrt{x}+3}{-6}\)

Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)

hay \(P\le-\frac{1}{2}\)

Dấu "=" xảy ra <=> x=0

Khách vãng lai đã xóa
BadCrush
17 tháng 5 2021 lúc 19:31

toán lớp 9 khó zậy em đọc k hỉu 1 phân số

Khách vãng lai đã xóa
Nguyễn Khánh Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 15:06

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

Hà Đức Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 9 2021 lúc 21:09

Bài 5: 

a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:

\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)

b: Để E<1 thì E-1<0

\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)

\(\Leftrightarrow\sqrt{x}-3< 0\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)

c: Để E nguyên thì \(4⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)

hay \(x\in\left\{16;25;49\right\}\)

Nhan Thanh
7 tháng 9 2021 lúc 21:17

Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)

Thay \(x=\sqrt{3}-1\) vào \(B\), ta được

\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)

b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)

c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)

Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)

Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)

Vậy \(B_{min}=-2\) khi \(x=0\)

bonk
Xem chi tiết
IamnotThanhTrung
16 tháng 8 2023 lúc 21:54

Ta có: \(P=\dfrac{\sqrt{x}-5}{\sqrt{x}+3}=1-\dfrac{8}{\sqrt{x}+3}\)

Ta có: \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+3\ge3\)

\(\Rightarrow\dfrac{1}{\sqrt{x}+3}\le\dfrac{1}{3}\)

\(\Leftrightarrow-\dfrac{8}{\sqrt{x}+3}\ge-\dfrac{8}{3}\)

\(\Leftrightarrow1-\dfrac{8}{\sqrt{x}+3}\ge1-\dfrac{8}{3}=-\dfrac{5}{3}\)

\(\Leftrightarrow P\ge-\dfrac{5}{3}\)

Dấu "=" xảy ra khi x = 0

Vậy \(P_{min}=-\dfrac{5}{3}\) khi x = 0

Tô Mì
16 tháng 8 2023 lúc 21:57

Điều kiện: \(x\ge0\).

Ta biến đổi: \(P=\dfrac{\sqrt{x}-5}{\sqrt{x}+3}=\dfrac{\sqrt{x}+3-8}{\sqrt{x}+3}=1-\dfrac{8}{\sqrt{x}+3}\).

Ta có: \(\sqrt{x}+3\ge3\Rightarrow-\dfrac{8}{\sqrt{x}+3}\ge-\dfrac{8}{3}\)

\(\Leftrightarrow P=1-\dfrac{8}{\sqrt{x}+3}\ge1-\dfrac{8}{3}=-\dfrac{5}{3}\)

Vậy: Giá trị nhỏ nhất của \(P\) là \(-\dfrac{5}{3}\). Dấu đẳng thức xảy ra khi và chỉ khi \(x=0\)

Nguyễn Thị Hương
Xem chi tiết
nthv_.
20 tháng 11 2021 lúc 17:32

\(=\dfrac{x-9+16}{\sqrt{x}+3}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+16}{\sqrt{x}+3}\\ =\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6\left(1\right)\)

Áp dụng BĐT cosi: \(\left(1\right)\ge2\sqrt{16}-6=2\)

Dấu \("="\Leftrightarrow\left(\sqrt{x}+3\right)^2=16\Leftrightarrow\sqrt{x}+3=4\Leftrightarrow x=1\left(tm\right)\)

Vậy GTNN là 2, xảy ra khi x=1

Nguyễn Minh Anh
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 3 2022 lúc 21:07

Với \(x< 9\) biểu thức này chỉ có max, ko có min

Để có min thì cần \(x>9\)

Nguyễn Việt Lâm
25 tháng 3 2022 lúc 21:28

\(P=\dfrac{x-5}{\sqrt{x}-3}=\dfrac{x-9+4}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+4}{\sqrt{x}-3}\)

\(P=\sqrt{x}+3+\dfrac{4}{\sqrt{x}-3}=\sqrt{x}-3+\dfrac{4}{\sqrt{x}-3}+6\)

\(P\ge2\sqrt{\left(\sqrt{x}-3\right).\dfrac{4}{\sqrt{x}-3}}+6=10\)

\(P_{min}=10\) khi \(\sqrt{x}-3=\dfrac{4}{\sqrt{x}-3}\Leftrightarrow\sqrt{x}-3=2\Rightarrow x=25\)

Nếu chưa học BĐT Cô-si như cách làm trên thì:

\(P=\dfrac{x-5}{\sqrt{x}-3}=\dfrac{x-10\sqrt{x}+25+10\sqrt{x}-30}{\sqrt{x}-3}\)

\(P=\dfrac{\left(\sqrt{x}-5\right)^2+10\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-5\right)^2}{\sqrt{x}-3}+10\)

Do \(x>9\Rightarrow\sqrt{x}>3\Rightarrow\sqrt{x}-3>0\Rightarrow\dfrac{\left(\sqrt{x}-5\right)^2}{\sqrt{x}-3}>0\)

\(\Rightarrow P\ge10\)

Trần Hoàng Anh
Xem chi tiết
Lê Song Phương
21 tháng 6 2023 lúc 20:55

Cách 1: Ta nhận thấy với mọi \(x>0\) thì \(3\sqrt{x}+2>2\sqrt{x}+2\), do đó \(B>1\). Với \(x=0\) thì \(B=1\). Do đó \(min_B=1\Leftrightarrow x=0\)

 Cách 1 tuy nhanh gọn nhưng nó chỉ có tác dụng trong một số ít các trường hợp. Trường hợp này may mắn cho ta ở chỗ ta có thể đánh giá tử lớn hơn hoặc bằng mẫu với mọi \(x\ge0\) (dấu "=" chỉ xảy ra khi \(x=0\))

Cách 2: \(B=\dfrac{3\sqrt{x}+2}{2\sqrt{x}+2}\)

\(\Leftrightarrow2B\sqrt{x}+2B=3\sqrt{x}+2\)

\(\Leftrightarrow\left(2B-3\right)\sqrt{x}=2-2B\)

\(\Leftrightarrow\sqrt{x}=\dfrac{2-2B}{2B-3}\)

Vì \(\sqrt{x}\ge0\) nên \(\dfrac{2-2B}{2B-3}\ge0\)

\(\Leftrightarrow1\le B< \dfrac{3}{2}\). Như vậy \(min_B=1\Leftrightarrow x=0\)

 Rõ ràng cách 2 dài hơn cách 1 nhưng nó có thể áp dụng trong nhiều dạng bài tìm GTNN hay GTLN khác nhau. Bạn xem xét bài toán rồi chọn cách làm cho phù hợp là được.

B =  \(\dfrac{3\sqrt{x}+2}{2\sqrt{x}+2}\) = \(\dfrac{3\sqrt{x}+3-1}{2\sqrt{x}+2}\) = \(\dfrac{3\left(\sqrt{x}+1\right)-1}{2\left(\sqrt{x}+1\right)}\) = \(\dfrac{3}{2}\) - \(\dfrac{1}{2\left(\sqrt{x}+1\right)}\)

Vì  \(\dfrac{1}{2\sqrt{x}+2}\) > 0 ∀ \(x\) ≥ 0 ⇒ B min ⇔A =  \(\dfrac{1}{2\sqrt{x}+2}\) max

2\(\sqrt{x}\) ≥ 0 ⇒ 2\(\sqrt{x}\) + 2 ≥ 2  ⇒ Max A = \(\dfrac{1}{2}\) ⇔ \(x\) = 0

Vậy Min B = \(\dfrac{3}{2}\) - \(\dfrac{1}{2}\)  =  1 ⇔ \(x\) = 0

illumina
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 6 2023 lúc 8:49

2P>căn 3*P

=>4P^2>3P

=>4P^2-3P>0

=>4P-3>0 và P>0

=>4P-3>0

=>\(\dfrac{12\sqrt{x}}{\sqrt{x}+1}-3>0\)

=>\(\dfrac{12\sqrt{x}-3\sqrt{x}-3}{\sqrt{x}+1}>0\)

=>9*căn x-3>0

=>x>1/9

ngọc linh
Xem chi tiết