cho \(a^3>36\) và abc=1
CM \(\dfrac{a^2}{3}+b^2+c^2>ac+ab+bc\)
Cho 3 số a, b, c thỏa mãn: abc=1 và \(a^3>36\). CMR: \(\dfrac{a^2}{3}+b^2+c^2>ab+bc+ca\)
Bạn học delta chưa nhỉ, HSG chắc chắn là học rồi:vv
Cho a, b, c thỏa mãn: abc=1 và \(a^3>36\). CMR: \(\dfrac{a^2}{2}+b^2+c^2>ab+bc+ca\)
Ta cần chứng minh: \(\dfrac{a^2}{2}+b^2+c^2>ab+bc+ca\Leftrightarrow\dfrac{a^2}{2}+b^2+c^2-ab-bc-ca>0\Leftrightarrow\dfrac{a^2}{4}+b^2+c^2+ab+ca+2bc-3bc+\dfrac{a^2}{4}>0\) \(\Leftrightarrow\left(\dfrac{a}{2}+b+c\right)^2+\dfrac{a^2}{12}+\dfrac{a^2}{6}-3bc>0\Leftrightarrow\left(\dfrac{a}{2}+b+c\right)^2+\dfrac{a^2-36bc}{12}+\dfrac{a^2}{6}>0\) Mà \(a^3>36;abc=1\Rightarrow a^3>36abc\Rightarrow a^2>36bc\)
\(\Rightarrow\left(\dfrac{a}{2}+b+c\right)^2+\dfrac{a^2-36bc}{12}+\dfrac{a^2}{6}>0\) luôn đúng
Cho 3 số a,b,c thỏa mãn abc=1 và a^3=36. cm: a^2/3 b^2 c^2 > ab bc ca
cho tg ABC\(\perp\)A, đường cao AH, M,N lần lượt là hình chiếu của H trên AB,AC
a) c/m: \(CM\times BN\times BC=AH^3\) và \(AN\times AB=AM\times AC\)
b) c/m:\(AM\times AN=\dfrac{AH^3}{BC}\)
c)c/m: \(\dfrac{AB^3}{AC^3}=\dfrac{BN}{CM}\)
d) c/m: \(AH^2\)=\(NA\times NB=MA\times MC\)
a: XétΔAHB vuông tại H có HM là đường cao
nên BM*BA=BH^2; AM*AB=AH^2; HM*AB=HA*HB
Xét ΔAHC vuông tại H có HN là đường cao
nên AN*AC=AH^2; CN*CA=CH^2; HA*HC=HN*CA
CN*BM*BC
=BH^2/BA*CH^2/CA*BC
\(=\dfrac{\left(BH\cdot CH\right)^2}{BA\cdot CA}\cdot BC\)
=AH^4/AH=AH^3
AM*AB=AH^2
AN*AC=AH^2
=>AM*AB=AN*AC(Cái này mới đúng nè bạn, còn cái AM*AC=AN*AB là sai đề rồi á)
b: AM*AN
=AH^2/AB*AH^2/AC
=AH^4/AB*AC
\(=\dfrac{AH^4}{AH\cdot BC}=\dfrac{AH^3}{BC}\)
c: Sửa đề: AB^3/AC^3=BM/CN
\(\dfrac{BM}{CN}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)
\(=\dfrac{BH^2}{AB}\cdot\dfrac{AC}{CH^2}=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)
Cho (a+b+c)^2=a^2+b^2+c^2 và abc khác 0
CM \(\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=3\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow ab+bc+ca=0\Leftrightarrow\dfrac{ab+bc+ca}{abc}=0\)\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) (1)
Ta có: \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\) (Bn thự cm nhé)
(1) \(\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\Leftrightarrow abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=3\)
\(\Leftrightarrow\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=3\left(đpcm\right)\)
Cho a, b, c >0 thỏa mãn: abc=1. CM: \(\dfrac{1}{a^2-ab+b^2}+\dfrac{1}{b^2-bc+c^2}+\dfrac{1}{c^2-ac+a^2}\le a+b+c\)
Ta có : \(a^2+b^2\ge2ab\Rightarrow a^2+b^2-ab\ge ab\)
\(\Rightarrow\dfrac{1}{a^2-ab+b^2}\le\dfrac{1}{ab}=\dfrac{abc}{ab}=c\) ( do $abc=1$ )
Tương tự ta có :
\(\dfrac{1}{b^2-bc+c^2}\le a\)
\(\dfrac{1}{c^2-ab+a^2}\le b\)
Cộng vế với vế các BĐT trên có :
\(\dfrac{1}{a^2-ab+b^2}+\dfrac{1}{b^2-bc+c^2}+\dfrac{1}{c^2-ac+a^2}\le a+b+c\)
Dấu "=" xảy ra khi $a=b=c$
\(VT=\dfrac{1}{a^2+b^2-ab}+\dfrac{1}{b^2+c^2-bc}+\dfrac{1}{c^2+a^2-ca}\)
\(VT\le\dfrac{1}{2ab-ab}+\dfrac{1}{2bc-bc}+\dfrac{1}{2ca-ca}=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=\dfrac{a+b+c}{abc}=a+b+c\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho a+b+c=2 và ab+bc+ac=1. CM: \(0\le a,b,c\le\dfrac{4}{3}\)
Ta có \(a+b+c=2\Leftrightarrow b+c=2-a\).
Do đó \(1=ab+bc+ca=a\left(b+c\right)+bc=a\left(2-a\right)+bc\Leftrightarrow bc=a^2-2a+1\).
Áp dụng bất đẳng thức AM - GM ta có:
\(4bc\le\left(b+c\right)^2\Leftrightarrow4\left(a^2-2a+1\right)\le\left(2-a\right)^2\Leftrightarrow3a^2-4a\le0\Leftrightarrow a\left(3a-4\right)\le0\Leftrightarrow0\le a\le\dfrac{4}{3}\).
Tương tự với b, c. Ta có đpcm.
Cho tam giác ABC vuông ở A, có AB = 6 cm, AC = 8 cm. Vẽ đường cao AH
a/ Tính diện tích tam giác vuông ABC
b/ Vẽ phân giác AD của góc A. Tính DB, DC
c/ Chứng minh:
1. Tam giác ABC và HBA đồng dạng
2. AB^2= BH .BC
3. \(\dfrac{1}{AH^2}\)=\(\dfrac{1}{AB^2}\)+\(\dfrac{1}{AC^2}\)
Cho a, b, c>0 thỏa mãn: abc=1. CM: \(\dfrac{1}{\sqrt{ab+a+2}}+\dfrac{1}{\sqrt{bc+b+2}}+\dfrac{1}{\sqrt{ca+c+2}}\le\dfrac{3}{2}\)