Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Big City Boy

Cho a, b, c thỏa mãn: abc=1 và \(a^3>36\). CMR: \(\dfrac{a^2}{2}+b^2+c^2>ab+bc+ca\)

Nguyễn Trọng Chiến
11 tháng 3 2021 lúc 21:19

Ta cần chứng minh: \(\dfrac{a^2}{2}+b^2+c^2>ab+bc+ca\Leftrightarrow\dfrac{a^2}{2}+b^2+c^2-ab-bc-ca>0\Leftrightarrow\dfrac{a^2}{4}+b^2+c^2+ab+ca+2bc-3bc+\dfrac{a^2}{4}>0\) \(\Leftrightarrow\left(\dfrac{a}{2}+b+c\right)^2+\dfrac{a^2}{12}+\dfrac{a^2}{6}-3bc>0\Leftrightarrow\left(\dfrac{a}{2}+b+c\right)^2+\dfrac{a^2-36bc}{12}+\dfrac{a^2}{6}>0\) Mà \(a^3>36;abc=1\Rightarrow a^3>36abc\Rightarrow a^2>36bc\) 

\(\Rightarrow\left(\dfrac{a}{2}+b+c\right)^2+\dfrac{a^2-36bc}{12}+\dfrac{a^2}{6}>0\) luôn đúng


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Lil Shroud
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Kamato Heiji
Xem chi tiết
Thánh cao su
Xem chi tiết
dia fic
Xem chi tiết
Trần Hoàng Đạt
Xem chi tiết