Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Big City Boy

Cho a, b, c >0 thỏa mãn: abc=1. CM: \(\dfrac{1}{a^2-ab+b^2}+\dfrac{1}{b^2-bc+c^2}+\dfrac{1}{c^2-ac+a^2}\le a+b+c\)

✿✿❑ĐạT̐®ŋɢย❐✿✿
10 tháng 3 2021 lúc 13:01

Ta có : \(a^2+b^2\ge2ab\Rightarrow a^2+b^2-ab\ge ab\)

\(\Rightarrow\dfrac{1}{a^2-ab+b^2}\le\dfrac{1}{ab}=\dfrac{abc}{ab}=c\) ( do $abc=1$ )

Tương tự ta có :

\(\dfrac{1}{b^2-bc+c^2}\le a\)

\(\dfrac{1}{c^2-ab+a^2}\le b\)

Cộng vế với vế các BĐT trên có :

\(\dfrac{1}{a^2-ab+b^2}+\dfrac{1}{b^2-bc+c^2}+\dfrac{1}{c^2-ac+a^2}\le a+b+c\)

Dấu "=" xảy ra khi $a=b=c$

Nguyễn Việt Lâm
10 tháng 3 2021 lúc 13:01

\(VT=\dfrac{1}{a^2+b^2-ab}+\dfrac{1}{b^2+c^2-bc}+\dfrac{1}{c^2+a^2-ca}\)

\(VT\le\dfrac{1}{2ab-ab}+\dfrac{1}{2bc-bc}+\dfrac{1}{2ca-ca}=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=\dfrac{a+b+c}{abc}=a+b+c\)

Dấu "=" xảy ra khi \(a=b=c=1\)


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Phan Anhh
Xem chi tiết
Bướm Đêm Sát Thủ
Xem chi tiết
Big City Boy
Xem chi tiết
Thánh cao su
Xem chi tiết
Big City Boy
Xem chi tiết
dbrby
Xem chi tiết
Big City Boy
Xem chi tiết
:vvv
Xem chi tiết