Cho a,b,x,y,z là các số khác 0 thỏa mãn: \(\dfrac{x^2-yz}{a}=\dfrac{y^2-zx}{b}=\dfrac{z^2-xy}{c}\ne0\). Tìm x, y, z biết x+y+z=2010 và \(a^2-bc=0\)
Cho a,b,x,y,z là các số khác 0 thỏa mãn: \(\dfrac{x^2-yz}{a}=\dfrac{y^2-zx}{b}=\dfrac{z^2-xy}{c}\ne0\). Tìm x, y, z biết x+y+z=2010 và \(a^2-bc=0\)
Đây là một số bất đẳng thức trích từ một số đề thi vào chuyên,rất mong nhận được lời giải từ mọi người :
Bài 1:Cho x,y,z >0 thỏa mãn x+y+z=1
Tìm Max Q= \(\dfrac{x}{x+\sqrt{x+yz}}+\dfrac{y}{y+\sqrt{y+zx}}+\dfrac{z}{z+\sqrt{z+xy}}\)
Bài 2:Cho x,y,z>0 thỏa mãn :x+y+z=1
Chứng minh:\(\dfrac{1-x^2}{x+yz}+\dfrac{1-y^2}{y+zx}+\dfrac{1-z^2}{z+xy}\ge6\)
Bài 3:Cho x,y,z>8
Tìm Min P=\(\dfrac{x}{\sqrt{y+z}-4}+\dfrac{y}{\sqrt{z+x}-4}+\dfrac{z}{\sqrt{x+y}-4}\)
Bài 4: Cho a,b,c>0 thỏa mãn (a+b)(b+c)(c+a)=1
CMR: ab+bc+ca\(\le\dfrac{3}{4}\)
Cho \(\dfrac{x^2-yz}{a}=\dfrac{y^2-xz}{b}=\dfrac{z^2-xy}{c}\)
C/M: \(\dfrac{a^2-bc}{x}=\dfrac{b^2-ca}{y}=\dfrac{c^2-ab}{z}\)
ta có \(A=\dfrac{1}{1+\dfrac{bc}{a}}+\dfrac{1}{1+\dfrac{ca}{b}}+\dfrac{1}{1+\dfrac{ab}{c}}\)
đặt \(\sqrt{\dfrac{bc}{a}};\sqrt{\dfrac{ca}{b}};\sqrt{\dfrac{ab}{c}}=\left(x;y;z\right)\) =>xy+yz+zx=1
ta có A=\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}+\dfrac{1}{1+z^2}\)
ta cần chứng minh \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}+\dfrac{1}{1+z^2}\ge\dfrac{9}{4}\Leftrightarrow1-\dfrac{1}{x^2}+1-\dfrac{1}{1+y^2}+1-\dfrac{1}{z^2+1}\le\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{x^2}{x^2+1}+\dfrac{y^2}{y^2+1}+\dfrac{z^2}{z^2+1}\ge\dfrac{3}{4}\)
mà \(\dfrac{x^2}{x^2+1}+\dfrac{y^2}{y^2+1}+\dfrac{z^2}{z^2+1}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3}=\dfrac{x^2+y^2+z^2+2}{x^2+y^2+z^2+3}=1-\dfrac{1}{x^2+y^2+z^2+3}\ge\dfrac{3}{4}\)
=> BĐT cầnd chứng minh luôn đúng
Cho x, y, z thỏa mãn : \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\). Cmr :
\(\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{zx\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\ge\dfrac{3}{2}\).
cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0.\) Tính : \(A=\dfrac{yz}{x^2}+\dfrac{zx}{y^2}+\dfrac{xy}{z^2}\)
a)Rút gọn biểu thức:
\(\dfrac{x^2+x-6}{x^3-4x^2-18x+9}\)
b) Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\left(x,y,z\ne0\right).\) Tính \(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\)
Cho x,y,z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Tính giá trị của biểu thức: \(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)