Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tlun
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 8 2023 lúc 20:28

1: =>sin^2(3x)=0

=>sin 3x=0

=>3x=kpi

=>x=kpi/3

2:

\(sinx=1-cos^2x=sin^2x\)

=>\(sin^2x-sinx=0\)

=>sin x(sin x-1)=0

=>sin x=0 hoặc sin x=1

=>x=pi/2+k2pi hoặc x=kpi

4:

sin 2x+sin x=0

=>sin 2x=-sin x=sin(-x)

=>2x=-x+k2pi hoặc 2x=pi+x+k2pi

=>x=pi+k2pi hoặc x=k2pi/3

5: =>cos(x+pi/3)=1/căn 2

=>x+pi/3=pi/4+k2pi hoặc x+pi/3=-pi/4+k2pi

=>x=-pi/12+k2pi hoặc x=-7/12pi+k2pi

Phạm Nhật Trúc
Xem chi tiết
Ngô Thành Chung
26 tháng 8 2021 lúc 23:09

1, \(sin\left(x+\dfrac{\pi}{6}\right)+cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{6}}{2}\)

⇔  \(\dfrac{\sqrt{2}}{2}sin\left(x+\dfrac{\pi}{6}\right)+\dfrac{\sqrt{2}}{2}cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)

⇔ \(sin\left(x+\dfrac{\pi}{6}+\dfrac{\pi}{4}\right)=sin\dfrac{\pi}{4}\)

2, \(\left(\sqrt{3}-1\right)sinx+\left(\sqrt{3}+1\right)cosx=1-\sqrt{3}\)

⇔ \(\dfrac{\left(\sqrt{3}-1\right)}{2\sqrt{2}}sinx+\dfrac{\left(\sqrt{3}+1\right)}{2\sqrt{2}}cosx=\dfrac{1-\sqrt{3}}{2\sqrt{2}}\)

⇔ sinx . si

Bạch Mỹ Miêu
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 8 2022 lúc 10:26

a: ĐKXĐ; 1-sin x>=0

=>sin x<=1(luôn đúng)

b: ĐKXĐ: 1-cosx>=0

=>cosx<=1(luôn đúng)

c: ĐKXĐ: 1-cos2x>=0

=>cos2x<=1

=>-1<=cosx<=1(luôn đúng)

 

Nguyễn Minh Đức
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 8 2020 lúc 20:10

\(\Leftrightarrow2\left(sinx+cosx\right)^3-6sinx.cosx\left(sinx+cosx\right)+2sinx.cosx\left(sinx+cosx\right)=\sqrt{2}\)

\(\Leftrightarrow2\left(sinx+cosx\right)^3-4sinx.cosx\left(sinx+cosx\right)=\sqrt{2}\)

Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=t^2-1\end{matrix}\right.\)

\(\Rightarrow2t^3-2t\left(t^2-1\right)=\sqrt{2}\)

\(\Leftrightarrow2t=\sqrt{2}\Leftrightarrow t=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{6}+k2\pi\\x+\frac{\pi}{4}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow x=...\)

ɞThành Trungɞ
Xem chi tiết
Linh Bảo
Xem chi tiết
Nguyễn Thị Kim Nguyên
Xem chi tiết
Vũ Thị Nhung
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 3 2019 lúc 22:28

\(A=\int\limits^{0.5}_{-0.5}cos\left[ln\left(\frac{1-x}{1+x}\right)\right]dx\) hay \(A=\int\limits^{0.5}_{-0.5}cos\left[\frac{ln\left(1-x\right)}{1+x}\right]dx\)

Dù thế nào thì có lẽ người ra đề cũng nhầm lẫn, đây là 1 bài toán ko thể giải quyết trong chương trình phổ thông, nếu hàm là hàm sin chứ ko phải cos thì còn có cơ hội làm được trong chương trình 12

Tích phân sửa lại như sau thì giải quyết được bằng phương pháp thông thường:

\(A=\int\limits^{0.5}_{-0.5}sin\left[ln\left(\frac{1-x}{1+x}\right)\right]dx\)

Vì hàm dưới dấu tích phân là hàm lẻ nên chỉ cần đặt \(x=-t\) sau đó đổi biến và cộng lại là suy ra ngay lập tức \(A=0\)

\(B=\int\limits^{\frac{\pi}{2}}_0\frac{cos^3x}{cos^3x+sin^3x}dx\) (1)

Đặt \(\frac{\pi}{2}-x=t\Rightarrow dx=-dt;\left\{{}\begin{matrix}x=0\Rightarrow t=\frac{\pi}{2}\\x=\frac{\pi}{2}\Rightarrow t=0\end{matrix}\right.\)

\(B=\int\limits^0_{\frac{\pi}{2}}\frac{sin^3t}{sin^3t+cos^3t}\left(-dt\right)=\int\limits^{\frac{\pi}{2}}_0\frac{sin^3t}{sin^3t+cos^3t}dt=\int\limits^{\frac{\pi}{2}}_0\frac{sin^3x}{sin^3x+cos^3x}dx\) (2)

Cộng vế với vế của (1) và (2):

\(2B=\int\limits^{\frac{\pi}{2}}_0\frac{sin^3x+cos^3x}{sin^3x+cos^3x}dx=\int\limits^{\frac{\pi}{2}}_0dx=\frac{\pi}{2}\Rightarrow B=\frac{\pi}{4}\)

c/ \(C=\int\limits^{\frac{\pi}{2}}_0\left(\sqrt{sinx}-\sqrt{cosx}\right)dx\) (1)

Đặt \(\frac{\pi}{2}-x=t\Rightarrow dx=-dt;\left\{{}\begin{matrix}x=0\Rightarrow t=\frac{\pi}{2}\\x=\frac{\pi}{2}\Rightarrow t=0\end{matrix}\right.\)

\(C=\int\limits^0_{\frac{\pi}{2}}\left(\sqrt{cost}-\sqrt{sint}\right)\left(-dt\right)=\int\limits^{\frac{\pi}{2}}_0\left(\sqrt{cost}-\sqrt{sint}\right)dt=\int\limits^{\frac{\pi}{2}}_0\left(\sqrt{cosx}-\sqrt{sinx}\right)dx\left(2\right)\)

Cộng vế với vế của (1) và (2):

\(2C=\int\limits^{\frac{\pi}{2}}_0\left(\sqrt{sinx}-\sqrt{cosx}+\sqrt{cosx}-\sqrt{sinx}\right)dx=0\)

\(\Rightarrow C=0\)

//Các dạng bài này đều giống nhau, nếu biểu thức đối xứng sin, cos và cận \(0;\frac{\pi}{2}\) thì đặt \(\frac{\pi}{2}-x=t\) rồi biến đổi và cộng lại

Trương Gia Kiện
Xem chi tiết
Phùng Khánh Linh
1 tháng 9 2020 lúc 16:25

\(1.sin3x+sin2x+sinx=cos2x+cosx+1\)

\(\Leftrightarrow2sin2x.cosx+sin2x=2cos^2x+cosx\)

\(\Leftrightarrow sin2x\left(2cosx+1\right)-cosx\left(2cosx+1\right)=0\\\)

\(\Leftrightarrow\left(2cosx-1\right)\left(sin2x-cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\sin2x=sin\left(\frac{\Pi}{2}-x\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\pm\frac{\Pi}{3}+k2\Pi\\x=\frac{\Pi}{6}+m2\Pi orx=\frac{\Pi}{2}+k2\Pi\end{matrix}\right.\)

\(2.cos^2x+cos^23x=sin^22x\)

\(\Leftrightarrow2+cos2x+cos6x=1-cos4x\)

\(\Leftrightarrow1+cos2x+cos6x+cos4x=0\)

\(\Leftrightarrow2cos^2x+2cos5x.cosx=0\)

\(\Leftrightarrow2cosx\left(cosx+cos5x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\Pi}{2}+k\Pi\\cos5x=cos\left(\Pi-x\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\Pi}{2}+k\Pi\\5x=\Pi-x+k2\Pi or5x=x-\Pi+k2\Pi\end{matrix}\right.\)