Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tùng Chi Pcy
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 3 2021 lúc 17:27

\(\Leftrightarrow\left\{{}\begin{matrix}x^3-x^2y-7\left(x-y\right)=x^2+y^2+2xy+4\\3x^2+y^2-8\left(x-y\right)+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-7\right)\left(x-y\right)-x^2-2xy=y^2+4\\3x^2-8\left(x-y\right)=-y^2-4\end{matrix}\right.\)

Cộng vế:

\(\left(x^2-7\right)\left(x-y\right)-8\left(x-y\right)+2x^2-2xy=0\)

\(\Leftrightarrow\left(x^2-15\right)\left(x-y\right)+2x\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+2x-15\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x^2+2x-15=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Thành
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 10 2021 lúc 18:41

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\3-y+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}x-2x-1=3\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\left(-2\right)+1=-3\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}2x+3x-6=4\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\\ 4,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y+2=3y+8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\\ 5,\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\\dfrac{3+3y}{2}-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\3+3y-8y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{y+1}{2}\\y=-\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-\dfrac{1}{5}\end{matrix}\right.\)

Kurusu Syo
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 10 2020 lúc 2:00

\(\Rightarrow2x^2y+3xy-2x^2-9x=4x^2+2y-6\)

\(\Leftrightarrow6x^2-2x^2y+\left(3xy-9x\right)+2y-6=0\)

\(\Leftrightarrow2x^2\left(3-y\right)-3x\left(3-y\right)-2\left(3-y\right)=0\)

\(\Leftrightarrow\left(2x^2-3x-2\right)\left(3-y\right)=0\)

\(\Leftrightarrow...\)

poppy Trang
Xem chi tiết
Kirito Matsuy
Xem chi tiết
Lightning Farron
13 tháng 4 2017 lúc 23:02

\(\left\{{}\begin{matrix}\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\\\sqrt{2x+y+1}+2\sqrt[3]{7x+12y+8}=2xy+y+5\end{matrix}\right.\)

Xét \(pt\left(1\right)\) dễ dàng suy ra \(x+y\ge0\)

\(VT=\sqrt{\left(x-y\right)^2+\left(2x+y\right)^2}+\sqrt{\left(x-y\right)^2+\left(2y+x\right)^2}\)

\(\ge\left|2x+y\right|+\left|2y+x\right|\ge3\left(x+y\right)\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=y\\x,y\ge0\end{matrix}\right.\)

Thay vào \(pt\left(2\right)\) ta được:

\(\sqrt{3x+1}+2\sqrt[3]{19x+8}=2x^2+x+5\)

\(\Leftrightarrow\left[\sqrt{3x+1}-\left(x+1\right)\right]+2\left[\sqrt[3]{19x+8}-\left(x+2\right)\right]=2x^2-2x\)

\(\Leftrightarrow\left(x-x^2\right)\left[\dfrac{1}{\sqrt{3x+1}+x+1}+2\cdot\dfrac{x+7}{\sqrt[3]{\left(19x+8\right)^2}+\left(x+2\right)\sqrt[3]{19x+8}+\left(x+2\right)^2}+2\right]=0\)

Do \(x;y\ge0\) nên pt trong ngoặc luôn dương

\(\Rightarrow x-x^2=0\Rightarrow x\left(1-x\right)=0\Rightarrow\)\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

\(x=y\)\(\Rightarrow\left[{}\begin{matrix}x=y=0\\x=y=1\end{matrix}\right.\) là nghiệm của hpt

Vũ Như Quỳnh
14 tháng 4 2017 lúc 7:42

thanks b đã chỉ giúp mình.tại đánh máy nên mình ko để ý^^

Vũ Như Quỳnh
13 tháng 4 2017 lúc 22:42

pt(1): 5x2+2xy+2y2>=(2x+y)2 nên \(\sqrt{5x^{2^{ }}+2xy+2y^2}\ge\:\)trị tuyệt đối 2x+y.

cmtt>\(\sqrt{2x^2+2xy+5y^2}\ge\)trị tuyệt đối x+ 2y.

>mà tt đối 2x+y cộng ttđ x+2y>= 3(x+y).

>(1)>=3(x+y).

đâu = xảy ra khi và chỉ khi x=y.

thay x=y >=0 vào (2):

\(\sqrt{3x+1}+2\sqrt[3]{19x+8}\) = 2x2+x+5.

<=>\(\left(\sqrt{3x+1}-\left(x+1\right)\right)\)+\(\left(2\sqrt[3]{19x+8}-\left(x+2\right)\right)\)= 2x2- 2x.

nhân liên hợp ta đc:

(x2-x)*(\(\dfrac{1}{\sqrt{3x+1}+x+1}+2\dfrac{x+7}{\sqrt[3]{19x+18}+\left(x+2\right)\left(\sqrt[3]{19x+18}\right)+\left(x+2\right)^2}=0\)

dễ thấy phần *>0 với mọi x,ytheo đk của (1)

>(x2 -x)=0

>x=0 hoặc x=1

>(x,y)=(0,0); (1,1).

vậy....

Nguyễn Thành
Xem chi tiết
Lấp La Lấp Lánh
7 tháng 10 2021 lúc 17:44

9) \(\left\{{}\begin{matrix}\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\\\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{21}{2x+y}+\dfrac{12}{2x-y}=222\\\dfrac{21}{2x+y}+\dfrac{14}{2x-y}=224\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{2x-y}=2\\\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=\dfrac{1}{10}\\2x-y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2y=\dfrac{9}{10}\\2x+y=\dfrac{1}{10}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{9}{20}\\x=\dfrac{11}{40}\end{matrix}\right.\)

10) \(\left\{{}\begin{matrix}x=2y-1\\2x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x-4y=-2\\2x-y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-1\\3y=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{3}\\y=\dfrac{7}{3}\end{matrix}\right.\)

11) \(\left\{{}\begin{matrix}3x-6=0\\2y-x=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\y=\dfrac{x+4}{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

12) \(\left\{{}\begin{matrix}2x+y=5\\x+7y=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\2x+14y=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\13y=13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Lấp La Lấp Lánh
7 tháng 10 2021 lúc 17:52

13) \(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{4}{x}-\dfrac{5}{y}=3\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x}-\dfrac{16}{y}=8\\\dfrac{12}{x}-\dfrac{15}{y}=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{1}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\y=1\left(tm\right)\end{matrix}\right.\)

14) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{x}+\dfrac{8}{y}=\dfrac{2}{3}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{7}{y}=\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=28\left(tm\right)\\y=21\left(tm\right)\end{matrix}\right.\)

15) \(\left\{{}\begin{matrix}2\sqrt{x-1}-\sqrt{y-1}=1\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)(ĐKXĐ: \(x\ge1,y\ge1\))

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}=3\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-1=1\end{matrix}\right.\)\(\Leftrightarrow x=y=2\left(tm\right)\)

ngô thị kiều trang
Xem chi tiết
Lâm Tố Như
31 tháng 10 2017 lúc 22:07

Mấy bài này đơn giản , bạn chỉ cần rút x hoặc y ra là đc

mk làm ví dụ một câu ha

\(\left\{{}\begin{matrix}x+2y=1\\-3x-y=2\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=1-2y\left(1\right)\\-3x-y=2\left(2\right)\end{matrix}\right.\)

Thay (1) vào bt (2) ta có -3(1-2y)-y=2

Bạn giải ra y rồi giải ra x là xong

Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 7 2021 lúc 22:09

\(\left\{{}\begin{matrix}x^3y^2+x^2y^3+x^3y+2x^2y^2+xy^3-30=0\\x^2y+xy^2+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2\left(x+y\right)+xy\left(x+y\right)^2-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left[xy+x+y\right]-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}xy\left(x+y\right)=u\\xy+x+y=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}uv-30=0\\u+v-11=0\end{matrix}\right.\)  \(\Rightarrow\left(u;v\right)=\left(6;5\right);\left(5;6\right)\)

TH1: \(\left\{{}\begin{matrix}xy\left(x+y\right)=6\\xy+x+y=5\end{matrix}\right.\)

Theo Viet đảo \(\Rightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)hoặc \(\left\{{}\begin{matrix}x+y=2\\xy=3\end{matrix}\right.\)(vô nghiệm)

TH2: \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}x+y=5\\xy=1\end{matrix}\right.\) \(\Rightarrow...\) hoặc \(\left\{{}\begin{matrix}x+y=1\\xy=5\end{matrix}\right.\) (vô nghiệm)

2 câu dưới hình như em hỏi rồi?