Cho tam giác ABC, AD là đường cao sao cho trực tâm O là trung điểm của AD.
Tính S = tgB . tgC
Cho tam giác ABC , trực tâm H là trung điểm của đường cao AD . Chứng minh rằng : tgB . tgC = 2
tgB = \(\dfrac{AD}{BD} \) ; tgC \(= \dfrac{AD}{CD} \)
\(\Leftrightarrow\) tgB . tgC = \(\dfrac{AD^2}{BD.CD} \) (1)
\(\Rightarrow\) \(\bigtriangleup{BDH} \sim \bigtriangleup{ADC}\)
\(\Rightarrow\) \(\dfrac{DH}{DC} = \dfrac{DB}{AD} \)
\(\Rightarrow\) \(DB . DC = DH . AD \) (2)
Từ (1) và (2) \(\Rightarrow\) tgB . tgC = \(\dfrac{4DH^2}{DH.AD} = \dfrac{4DH^2}{2DH^2} = 2\) (đpcm)
Tam giác ABC , trực tâm H là trung điểm của đường cao AD . CMR : tgB . tgC = 2
Cái này bạn phải đăng qua môn toán nha. Bạn copy đăng qua môn toán đi rồi mình xóa câu hỏi cho đỡ loãng nhé
Cho tam giác ABC nhọn, các đường cao AD, BE cắt nhau tại H. Gọi O là giao điểm 3 đường trung trực của tam giác ABC. Trên tia đối của OA lấy điểm M sao cho O là trung điểm của AM. Gọi I là trung điểm của BC và G là trọng tâm của tam giác ABC
a. C/m: tứ giác BHCM là hình bình hàng, từ đó suy ra: I là trung điểm của HM
b. C/m: AH=2OI
c. C/m: 3 điểm H,G,O thẳng hàng
a: O là giao điểm của 3 đường trung trực của ΔABC
=>O là tâm đường tròn ngoại tiếp ΔABC
=>AM là đường kính của (O)
Xét (O) có
ΔABM nội tiếp đường tròn
AM là đường kính
=>ΔABM vuông tại B
=>BM vuông góc AB
=>BM//CH
Xét (O) có
ΔACM nội tiếp
AM là đường kính
=>ΔAMC vuông tại C
=>AC vuông góc CM
=>CM//BH
Xét tứ giác BHCM có
BH//CM
BM//CH
=>BHCM là hình bình hành
=>BC cắt HM tại trung điểm của mỗi đường
=>I là trung điểm của HM
b: Xét ΔMAH có
O,I lần lượt là trung điểm của MA,MH
=>OI là đường trung bình
=>OI//AH và OI=1/2AH
=>AH=2OI
Cho tam giác nhọn ABC, AD là đường cao, Vẽ M,N sao cho A,B là trung trực đoạn thẳng DM,AC là đường cao của MN với BC. CMR: Giao điểm các đường phân giác của tam giác DÈ và trực tâm cảu tam giác ABC trùng nhau
Cho tam giác ABC nhọn. 3 đường cao AD, BE, CF cắt nhau tại H. M là trung điểm BC. S là giao điểm của EF và BC. Chứng minh rằng H là trực tâm của tam giác ASM.
Ta cần chứng minh H là trực tâm của tam giác ASM. Với mục đích này, ta sẽ sử dụng tính chất của hình chữ nhật.
Vì M là trung điểm BC, ta có BM = MC. Do đó, SM là đường trung trực của BC.
Vì EF ⊥ BE và CF, nên EF song song với đường BC (vì BE // CF). Do đó, S nằm trên đường trung trực của BC.
Vì H là giao điểm của AD và BE, ta có AH ⊥ BC và BH ⊥ AC. Do đó, AH // SM và BH // SM.
Khi đó, ta suy ra được rằng tứ giác ABSH là hình chữ nhật (do có 2 cặp cạnh đối nhau là song song và bằng nhau).
Do AS là đường chéo của hình chữ nhật ABSH, nên H là trực tâm của tam giác ASM.
Vậy, H là trực tâm của tam giác ASM.
cho tam giác nhọn ABC, các đường cao AD và BE cắt nhau tại H. Vẽ các đường trung trực OM và ON của các cạnh BC, CA (O là giao điểm của hai đường trung trực, M và N lần lượt là trung điểm của các cạnh BC và CA). Gọi G là trọng tâm của tam giác ABC. Tính tỉ số các diện tích của hai tam giác AHG và AOG
Cho tam giác ABC có A>90. H là trực tâm. O là giao điểm 3 đường trung trực. Vẽ D sao cho O là trung điểm AD
a) C/m: BH//CD; BH=CD
b) Kẻ OM vuông góc với BC. C/m: M là trung điểm HD
c) Gọi G là trọng tâm tam giác ABC. C/m: H,G,O thẳng hàng
a) Chứng minh BH//CD và BH=CD:
Vì O là giao điểm 3 đường trung trực nên O là tâm đường tròn ngoại tiếp tam giác ABC.
Vì A>90 nên tâm đường tròn ngoại tiếp tam giác ABC nằm ngoài tam giác ABC.
Vì H là trực tâm nên AH ⊥ BC và AH cắt BC tại D.
Vì O là trung điểm AD nên OD = AO.
Vì O là tâm đường tròn ngoại tiếp tam giác ABC nên OB = OC.
Từ đó suy ra OB = OC = OD = AO.
Vậy tứ giác OBCD là tứ giác nội tiếp.
Do đó, ta có: (BHCD) => ∠BHC + ∠BDC = 180°
Mà ∠BHC + ∠BDC = 90° + 90° = 180°
Vậy BH // CD và BH = CD.
b) Chứng minh M là trung điểm HD:
Vì OM ⊥ BC và H là trực tâm nên HM // BC.
Vì HM // BC và BH // CD nên HM // CD.
Do đó, ta có: (HMD) => ∠HMD + ∠HCD = 180°
Mà ∠HMD + ∠HCD = 90° + 90° = 180°
Vậy HM // CD và HM = CD/2.
Do đó, M là trung điểm HD.
c) Chứng minh H, G, O thẳng hàng:
Gọi E, F lần lượt là trung điểm của AB, AC.
Ta có: EG // HO và EG = (2/3)HO
Do đó, ta có: H, G, O thẳng hàng.
cho tam giác ABC, đường cao AD, kẻ DL vuông góc với AB, trên tia DL lấy điểm M sao cho AB là trung trực của DM. Kẻ DK vuông góc AC và lấy trên tia DK 1 điểm N sao cho AC là trung trực của DN; MN cắt AB ở F và cắt AC ở E.
a: CMR: tam giác MAN cân
b: CMR: AD là tia phân giác góc FED
c: CMR: AD, BE, CF, đồng quy
d: CMR: H là trực tâm của tam giác ABC
mk không giải được câu C với D thôi A và câu B không cần giải