CMR trong 1 tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh ấy và ngược lại
Bài 1 CMR trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền
Bài 2 Điều ngược lại bài 1 có đúng không vì sao
BẠN NÀO GIÚP MIK VS BÀI HƠI KHÓ BẠN NÀO GIẢI TRƯỚC MIK TICK CHO NHA
Bài này trong sách giáo khoa 8 tập 1 bài hình chữ nhật có chứng minh đó bạn
trên tia đối tia MA,BAC=90 độ,M trung điểm BC lấy N sao cho AM=AN
điều ngược lại vẫn đúng,có nhiều cách chứng minh theo cách trên cũng được
mik mới hok lớp 7 đây là bài đội tuyển
mong các bạn giúp đỡ
1/ Chứng minh định lí: Trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.
2/ Chứng minh định lí: Nếu 1 tam giác có trung tuyến ứng với một cạnh bằng nửa cạnh ấy thì tam giác đó là tam giác vuông.
VẼ HÌNH - GHI GT + KL GIÙM LUÔN!
1/ Phần này đơn giản thôi bạn! Khi chứng minh tâm của đường tròn ngoại tiếp tam giác vuồn là trung điểm cạnh huyền thì ta chứng minh ngược lại là trung điểm của cạnh huyền trong 1 tam giác vuông là tâm của đường tròn ngoại tiếp.
Giả sử ta có tam giác ABC vuông tại A và O là trung điểm của cạnh huyền BC
=> AO là đường trung tuyến ứng với cạnh huyền
=> OA = OB =OC = 1/2 BC
=> O là tâm của đường tròn ngoại tiếp tam giác ABC
Vậy ....
2/ Giả sử ta có tam giác ABC có BC là đường kính của đường tròn ngoại tiếp tam giác.
Gọi O là tâm của đường tròn ngoại tiếp tam giác ABC
=>OA = OB =OC (*)
mà BC là đường kính của đường tròn ngoại tiếp
=> O là trung điểm BC
=> OB = OC = 1/2 BC(**)
từ (*) và (**) => OA = OB = OC = 1/2 BC
=> tam giác ABC vuông tại A
@Nhoc_sieu_pham đây là toán lớp 7 mà, sao lại giải cách lớp 9 như vậy được?
1> Giả sử đó là tam giác vuông ABC, trung tuyến AM. Trên tia đối MA lấy điểm H sao cho M là trung điểm của AH.
=>MA=MH=1/2AH(*)
\(\Delta AMC=\Delta BMH\left(c.g.c\right)\)
=>\(\widehat{CAM}=\widehat{BHM}\)và AC=BH
Mà hai góc này nằm ở vị trí so le trrong của 2 đường thẳng AC và BH
=> AC // BH
mà AC L AB => BH L AB => \(\widehat{ABH}=90^o\)
Xét \(\Delta ABC\)và\(\Delta BAH\)có
AC=BC
\(\widehat{BAC}=\widehat{ABH}=90^o\)
cạnh chung AB
=> \(\Delta ABC=\Delta BAH\left(c.g.c\right)\)
=> BC=AH(**)
Lại có MB=MC=1/2BC(***)
Từ (*),(**),(***)=> MA=MB=MC=1/2BC (đpcm)
CMR : trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh ấy
Ta có hình vẽ:
Ta có \(_{\Delta}\)ABC có A=90 độ, AM là trung tuyến của \(_{\Delta}\)ABC nên BM=CN.Kẻ MN là tia đối của AM và AM=MN.
Xét \(\Delta\)AMB và \(\Delta\)NMC có:
AM=NM (cách vẽ)
BM=CM( do AM là đường trung tuyến của \(_{\Delta}\)ABC)
Góc M1= góc M2 ( đối đỉnh )
Do đó: \(\Delta\)AMB= \(\Delta\)NMC (c.g.c)
\(\Rightarrow\)AB=CN ( 2 cạnh tương ứng) và
Góc B= góc C1( 2 góc tương ứng) . Mà góc B+ góc C2= 90 độ
Nên C1+C2=90 độ.Hay góc ACN = 90 độ
Xét \(_{\Delta}\)ABC và \(\Delta\)ACN có:
AC chung
Góc BAC= góc ACN=90 độ
AB= CN (CMT)
Do đó \(_{\Delta}\)ABC = \(\Delta\)ACN (c.g.c)
\(\Rightarrow\)BC=AN (2 cạnh tương ứng)
Mà AM=\(\dfrac{AN}{2}\)( AM=MN)
\(\Rightarrow\)AM=\(\dfrac{BC}{2}\)
https://hoc24.vn/hoi-dap/question/190925.html đây em nhé!
CMR trong 1 tam giác vuông,đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền
* Gợi ý: Dùng phương pháp chứng minh phản chứng
Cách khác (theo cách lớp 7):
Xét tam giác ABC vuông tại A,trung tuyến AD.Ta cần chứng minh: \(AD=\frac{1}{2}BC\)
Ta chứng minh ngược lại,tức là \(AD\ne\frac{1}{2}BC\)
+ Nếu \(AD>\frac{1}{2}BC\Rightarrow\widehat{B}>\widehat{A_2},AD>CD\Leftrightarrow\widehat{C}>\widehat{A}\) (Đ.lí về cạnh đối diện với góc trong tam giác)
Hay \(\widehat{B}+\widehat{C}>\widehat{A_2}+\widehat{A_1}=90^o>\widehat{A}\) (mâu thuẫn với giả thiết)
+ Chứng minh tương tự với \(AD< \frac{1}{2}BC\) được: \(\widehat{B}+\widehat{C}< \widehat{A_2}+\widehat{A_1}\Leftrightarrow90^o< \widehat{A}\) (mâu thuẫn)
Vậy ta luôn có: \(AD=\frac{1}{2}BC\) (đpcm)
Tam giác vuông ABC, vuông tại A, có AM là trung tuyến
trên tia đối của MA lấy điểm D sao cho MD=AM
Do đó AM=1/2 AD (1)
suy ra tứ giác ABDC là hình bình hành, có ^A=90*
nên ABDC là hình chữ nhật
suy ra AD=BC (2)
Từ (1) và (2) ta có AM = 1/2 BC
Vậy trong 1 tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.
Tham khảo thêm: Câu hỏi của Nguyễn Huỳnh Minh Thư - Toán lớp 7 - Học toán với OnlineMath
dùng tính chất đường trung bình của tam giác chứng minh trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.
https://hoc247.net/hoi-dap/toan-7/chung-minh-dinh-ly-trong-1-tam-giac-vuong-duong-trung-tuyen-ung-voi-canh-huyen-bang-nua-canh-huyen-faq195049.html
Tham khảo nha bạn chứ mk ko biết cách chứng minh dùng đường trung bình
CMR : trong tam giác vuông đường trung tuyến ứng vs cạnh huyền bằng một nửa cạnh ấy
Lấy D đối xứng với A qua M
Xét tam giác ABM và tam giác CDM, ta có:
Góc M1 = M2 ( đối đỉnh)
MB = MC (= \(\frac{1}{2}\)BC)
MA = MD ( = \(\frac{1}{2}\)AD)
=> Tam giác ABM = tam giác DCM (c.g.c)
=> AB = CD ; góc A1= D1
Mặt #, ta có:
Góc A1 = A2 = BAC= 90o
<=> Góc D1 + A2 = 90o
<=> 180o - ( góc D1 + A2) = 180o- 90o
<=> Góc ACD = 90o ( tổng 3 góc trong của tam giác ACD)
Xét tam giác ABC và tam giác ACD, ta có:
Góc BAC = ACD (= 90o)
AB= CD ( cmt)
AC chung
=> Tam giác ABC = tam giác CDA ( c.g c) => BC = AD
Mà theo cách dựng điểm D: MA = MD = \(\frac{1}{2}\)AD
Từ đó: => AM = \(\frac{1}{2}\)BC
Hay là trong 1 tam giác vuông trung tuyến ứng với cạnh huyền = \(\frac{1}{2}\)cạnh huyền.
=> Đpcm
Chúc bn hk tốt ^^ Mk k biết viết các kí hiệu mong bn thông cảm
Bài 6.Chứng minh rằng “Trong một tam giác vuông, đường trung tuyến ứng với
cạnh huyền bằng nửa cạnh ấy”.
Gọi tam giác vuông là ΔABC vuông tại A, đường trung tuyến ứng với cạnh huyền là AM
Trên tia đối của tia MA, lấy điểm D sao cho M là trung điểm của AD
Xét tứ giác ABDC có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo AD(gt)
Do đó: ABDC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
mà \(\widehat{CAB}=90^0\)(ΔABC cân tại A)
nên ABDC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Suy ra: BC=AD(hai đường chéo của hình chữ nhật ABDC)
mà \(AM=\dfrac{AD}{2}\)(M là trung điểm của AD)
nên \(AM=\dfrac{1}{2}BC\)(đpcm)
Xét hình chữ nhật ABCD
=> O là trung điểm của AC và BD => OA=OB=OC=OD
Vì ABCD là hình chữ nhật
=>\(\widehat{ABC}=90^o\)=>\(\Delta ABC\) vuông tại B
Mà O là trung điểm của AC
=> AO là đường trung tuyến cuả \(\Delta ABC\)
=> AO=BO=CO (cmt)
a,c/m rằng: trong 1 tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền.
b, c/m rằng: nếu tam giác abc có đường trung tuyến xuất phát từ a bằng 1 nửa cạnh bc thì đó là tam giác vuông tại a.