giải phương trình:
\(cos2x+5=2\left(2-cosx\right).\left(sin-cosx\right)\)
1) Giải phương trình \(\cos2x+5=2\left(2-cosx\right)\left(\sin x-cosx\right)\)
\(\Leftrightarrow2cos^2x+4=4\left(sinx-cosx\right)-2sinx.cosx+2cos^2x\)
\(\Leftrightarrow4\left(sinx-cosx\right)-2sinx.cosx+1-5=0\)
\(\Leftrightarrow4\left(sinx-cosx\right)+\left(sinx-cosx\right)^2-5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=1\\sinx-cosx=-5\left(voli\right)\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}=sin\frac{\pi}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)
Giải phương trình:
\(\dfrac{1+cos2x\times cosx}{cos^2x}+2\left(sin^4x+cos^4x\right)=3\)
\(sinx+4cosx=2+sin2x\)
\(\left(1-sin2x\right)\left(sinx+cosx\right)=cos2x\)
\(1+sinx+cosx+sin2x+cos2x=0\)
\(sinx+sin2x+sin3x=1+cosx+cos2x\)
\(sin^22x-cos^28x=sin\left(\dfrac{17\pi}{2}+10x\right)\)
1. Cho biết \(cosx=\dfrac{3}{4}\). Tính giá trị của biểu thức \(P=sin^22x\).
2. Giải phương trình \(cos2x-sin\left(x+\dfrac{\pi}{3}\right)=0\)
1: \(P=sin^22x=1-cos^22x\)
\(=1-\left(cos2x\right)^2\)
\(=1-\left(2cos^2x-1\right)^2\)
\(=1-\left(2\cdot\dfrac{9}{16}-1\right)^2\)
\(=1-\left(\dfrac{9}{8}-1\right)^2=1-\left(\dfrac{1}{8}\right)^2=\dfrac{63}{64}\)
2:
\(cos2x-sin\left(x+\dfrac{\Omega}{3}\right)=0\)
=>\(sin\left(x+\dfrac{\Omega}{3}\right)=cos2x=sin\left(\dfrac{\Omega}{2}-2x\right)\)
=>\(\left[{}\begin{matrix}x+\dfrac{\Omega}{3}=\dfrac{\Omega}{2}-2x+k2\Omega\\x+\dfrac{\Omega}{3}=\Omega-\dfrac{\Omega}{2}+2x+k2\Omega\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}3x=\dfrac{\Omega}{6}+k2\Omega\\-x=\dfrac{1}{6}\Omega+k2\Omega\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Omega}{18}+\dfrac{k2\Omega}{3}\\x=-\dfrac{1}{6}\Omega-k2\Omega\end{matrix}\right.\)
giải các pt
a) \(sinx+cosx-\sqrt{2}sin2x=0\)
b) \(sin^2x+sin2x=3cos^2x\)
c) \(sinx\left(1-sinx\right)=cosx\left(cosx-1\right)\)
d) \(2\left(sin^3x-cos^3x\right)=\sqrt{3}.cos2x\left(sinx-cosx\right)\)
a/
\(\Leftrightarrow sinx+cosx=\sqrt{2}sin2x\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=\sqrt{2}sin2x\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=sin2x\)
\(\Rightarrow\left[{}\begin{matrix}2x=x+\frac{\pi}{4}+k2\pi\\2x=\frac{3\pi}{4}-x+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k2\pi\\x=\frac{\pi}{4}+\frac{k2\pi}{3}\end{matrix}\right.\)
b/
\(\Leftrightarrow\frac{1-cos2x}{2}+sin2x=\frac{3\left(1+cos2x\right)}{2}\)
\(\Leftrightarrow sin2x-2cos2x=1\)
\(\Leftrightarrow\frac{1}{\sqrt{5}}sin2x-\frac{2}{\sqrt{5}}cos2x=\frac{1}{\sqrt{5}}\)
Đặt \(\frac{1}{\sqrt{5}}=cosa\) với \(a\in\left(0;\pi\right)\)
\(\Leftrightarrow sin2x.cosa-cos2a.sina=cosa\)
\(\Leftrightarrow sin\left(2x-a\right)=cosa=sin\left(\frac{\pi}{2}-a\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-a=\frac{\pi}{2}-a+k2\pi\\2x-a=a-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=a-\frac{\pi}{4}+k\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow sinx-sin^2x=cosx-cos^2x\)
\(\Leftrightarrow sinx-cosx-\left(sin^2x-cos^2x\right)=0\)
\(\Leftrightarrow sinx-cosx-\left(sinx-cosx\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(1-sinx-cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\1-sinx-cosx=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=0\\1-\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=k\pi\\x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
d/
\(\Leftrightarrow2\left(sinx-cosx\right)\left(1+sinx.cosx\right)=\sqrt{3}cos2x\left(sinx-cosx\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\left(1\right)\\2\left(1+sinx.cosx\right)=\sqrt{3}cos2x\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=0\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=0\)
\(\Leftrightarrow x-\frac{\pi}{4}=k\pi\Rightarrow x=\frac{\pi}{4}+k\pi\)
\(\left(2\right)\Leftrightarrow2+2sinx.cosx=\sqrt{3}cos2x\)
\(\Leftrightarrow2+sin2x=\sqrt{3}cos2x\)
\(\Leftrightarrow\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x=-1\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=-1\)
\(\Leftrightarrow2x-\frac{\pi}{3}=-\frac{\pi}{2}+k2\pi\)
\(\Rightarrow x=-\frac{\pi}{12}+k\pi\)
Giải phương trình:
\(\sqrt{3}\left(Sinx-Cos2x\right)+Cosx+Sin2x=0\)
Giải phương trình: \(3Cot^2x+2\sqrt{2}Sin^2x=\left(2+3\sqrt{2}\right)Cosx\)
ĐK: \(x\ne k\pi\)
Đặt \(\left\{{}\begin{matrix}cotx=a\\sinx=b\end{matrix}\right.\left(a\in R;b\in\left[-1;1\right]\right)\), khi đó:
\(3cot^2x+2\sqrt{2}sin^2x=\left(2+3\sqrt{2}\right)cosx\)
\(\Leftrightarrow3a^2+2\sqrt{2}b^2=\left(2+3\sqrt{2}\right)ab\)
\(\Leftrightarrow3a^2-2ab+2\sqrt{2}b^2-3\sqrt{2}ab=0\)
\(\Leftrightarrow\left(3a-2b\right)\left(a-\sqrt{2}b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3a=2b\\a=\sqrt{2}b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3cotx=2sinx\\cotx=\sqrt{2}sinx\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3cosx=2sin^2x\\cosx=\sqrt{2}sin^2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3cosx=2-2cos^2x\\cosx=\sqrt{2}-\sqrt{2}cos^2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2cos^2x+3cosx-2=0\\\sqrt{2}cos^2x+cosx-\sqrt{2}=0\end{matrix}\right.\)
TH1: \(2cos^2x+3cosx-2=0\Leftrightarrow cosx=\dfrac{1}{2}\Leftrightarrow x=\pm\dfrac{\pi}{3}+k2\pi\)
TH2: \(\sqrt{2}cos^2x+cosx-\sqrt{2}=0\Leftrightarrow cosx=\dfrac{\sqrt{2}}{2}\Leftrightarrow x=\pm\dfrac{\pi}{4}+k2\pi\)
Giải các phương trình sau:
a, \(\sqrt{2}\) sin \(\left(2x+\frac{\pi}{4}\right)\)=3sinx+cosx+2
b, 1+sinx+cosx+sin2x+cos2x=0
c, (2cosx-1)(2sinx+cosx)=sin2x-sinx
d, cos3x+cos2x-cosx-1=0
a.
\(\Leftrightarrow sin2x+cos2x=3sinx+cosx+2\)
\(\Leftrightarrow2sinx.cosx-3sinx+2cos^2x-cosx-3=0=0\)
\(\Leftrightarrow sinx\left(2cosx-3\right)+\left(cosx+1\right)\left(2cosx-3\right)=0\)
\(\Leftrightarrow\left(sinx+cosx+1\right)\left(2cosx-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=-1\\2cosx-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\\cosx=\frac{3}{2}\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
\(\Leftrightarrow1+sinx+cosx+2sinx.cosx+2cos^2x-1=0\)
\(\Leftrightarrow sinx\left(2cosx+1\right)+cosx\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(2cosx+1\right)=0\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
c.
\(\Leftrightarrow\left(2cosx-1\right)\left(2sinx+cosx\right)=2sinx.cosx-sinx\)
\(\Leftrightarrow\left(2cosx-1\right)\left(2sinx+cosx\right)-sinx\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left(2cosx-1\right)\left(2sinx+cosx-sinx\right)=0\)
\(\Leftrightarrow\left(2cosx-1\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2cosx-1=0\\sinx+cosx=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\sin\left(x+\frac{\pi}{4}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
giải phương trình
a) \(sinx=sin\dfrac{\pi}{4}\)
b) \(cos2x=cosx\)
c) \(tan\left(x-\dfrac{\pi}{3}\right)=\sqrt{3}\)
d) \(cot\left(2x+\dfrac{\pi}{6}\right)=cot\dfrac{\pi}{4}\)
a: \(sinx=sin\left(\dfrac{\Omega}{4}\right)\)
=>\(\left[{}\begin{matrix}x=\dfrac{\Omega}{4}+k2\Omega\\x=\Omega-\dfrac{\Omega}{4}+k2\Omega=\dfrac{3}{4}\Omega+k2\Omega\end{matrix}\right.\)
b: cos2x=cosx
=>\(\left[{}\begin{matrix}2x=x+k2\Omega\\2x=-x+k2\Omega\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=k2\Omega\\3x=k2\Omega\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=k2\Omega\\x=\dfrac{k2\Omega}{3}\end{matrix}\right.\Leftrightarrow x=\dfrac{k2\Omega}{3}\)
c:
ĐKXĐ: \(x-\dfrac{\Omega}{3}< >\dfrac{\Omega}{2}+k\Omega\)
=>\(x< >\dfrac{5}{6}\Omega+k\Omega\)
\(tan\left(x-\dfrac{\Omega}{3}\right)=\sqrt{3}\)
=>\(x-\dfrac{\Omega}{3}=\dfrac{\Omega}{3}+k\Omega\)
=>\(x=\dfrac{2}{3}\Omega+k\Omega\)
d:
ĐKXĐ: \(2x+\dfrac{\Omega}{6}< >k\Omega\)
=>\(2x< >-\dfrac{\Omega}{6}+k\Omega\)
=>\(x< >-\dfrac{1}{12}\Omega+\dfrac{k\Omega}{2}\)
\(cot\left(2x+\dfrac{\Omega}{6}\right)=cot\left(\dfrac{\Omega}{4}\right)\)
=>\(2x+\dfrac{\Omega}{6}=\dfrac{\Omega}{4}+k\Omega\)
=>\(2x=\dfrac{1}{12}\Omega+k\Omega\)
=>\(x=\dfrac{1}{24}\Omega+\dfrac{k\Omega}{2}\)