Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kim Taehyungie
Xem chi tiết
vung nguyen thi
Xem chi tiết
Unruly Kid
13 tháng 12 2017 lúc 19:41

a) \(\dfrac{a^2+2}{\sqrt{a^2+1}}=\dfrac{a^2+1+1}{\sqrt{a^2+1}}=\sqrt{a^2+1}+\dfrac{1}{\sqrt{a^2+1}}\ge2\)

b) Tương tự

Trà My Nguyễn Thị
Xem chi tiết
Nguyen Quynh Huong
13 tháng 7 2017 lúc 15:34

2, a, \(a+\dfrac{1}{a}\ge2\)

\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)

\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)

vậy...................

Phương An
13 tháng 7 2017 lúc 15:37

Câu 1:

\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+5}=3\)

\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)

Phương An
13 tháng 7 2017 lúc 15:49

2b)

Biến đổi tương đương:

\(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\) (1)

\(\Leftrightarrow\dfrac{a+b}{2}\ge\dfrac{a+2\sqrt{ab}+b}{4}\)

\(\Leftrightarrow2a+2b\ge a+2\sqrt{ab}+b\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) luôn đúng

=> (1) đúng

Dấu "=" xảy ra khi a = b.

2c)

Áp dụng BĐT Cauchy Shwarz dạng Engel, ta có:

\(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}=\sqrt{a}+\sqrt{b}\) (đpcm)

Dấu "=" xảy ra khi a = b.

2d)

Áp dụng BĐT AM - GM, ta có:

\(\dfrac{a^2+2}{\sqrt{a^2+1}}=\dfrac{a^2+1}{\sqrt{a^2+1}}+\dfrac{1}{\sqrt{a^2+1}}=\sqrt{a^2+1}+\dfrac{1}{\sqrt{a^2+1}}\ge2\) (đpcm)

Dấu "=" xảy ra khi a = 0

Hoang Tran
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 8 2021 lúc 21:11

\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}=\dfrac{\sqrt{ab+2c^2}}{\sqrt{a^2+b^2+ab}}=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+2c^2\right)}}\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)

\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+a^2+b^2+2c^2}=\dfrac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)

Tương tự và cộng lại:

\(VT\ge ab+bc+ca+2\left(a^2+b^2+c^2\right)=2+ab+bc+ca\)

TFBoys
Xem chi tiết
Mysterious Person
24 tháng 8 2018 lúc 11:03

điều kiện xác định : \(a>0\)

ta có : \(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{a^2-\sqrt{a}}{a+\sqrt{a}+1}+\dfrac{1}{\sqrt{a}}\)

\(\Leftrightarrow A=\dfrac{\sqrt{a}\left(\sqrt{a}^3+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(\sqrt{a}^3-1\right)}{a+\sqrt{a}+1}+\dfrac{1}{\sqrt{a}}\)

\(\Leftrightarrow A=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{a+\sqrt{a}+1}+\dfrac{1}{\sqrt{a}}\)\(\Leftrightarrow A=\sqrt{a}\left(\sqrt{a}+1\right)-\sqrt{a}\left(\sqrt{a}-1\right)+\dfrac{1}{\sqrt{a}}\)

\(\Leftrightarrow A=a+\sqrt{a}-a+\sqrt{a}+\dfrac{1}{\sqrt{a}}=2\sqrt{a}+\dfrac{1}{\sqrt{a}}\)

áp dụng bất đẳng thức cô si ta có : \(A=2\sqrt{a}+\dfrac{1}{\sqrt{a}}\ge2\sqrt{2}\Rightarrow\left(đpcm\right)\)

Vũ Anh Quân
Xem chi tiết
Lightning Farron
6 tháng 9 2017 lúc 17:23

b)Áp dụng BĐT AM-GM ta có:

\(\dfrac{\sqrt{a}}{\sqrt{b}}+\dfrac{\sqrt{b}}{\sqrt{a}}\ge2\sqrt{\dfrac{\sqrt{a}}{\sqrt{b}}\cdot\dfrac{\sqrt{b}}{\sqrt{a}}}=2\)

Xảy ra khi \(a=b\)

c)Áp dụng BĐT \(x^2+y^2\ge2xy\) có:

\(VT=\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\)

\(\ge2\sqrt{\left(a+b\right)\cdot2\sqrt{ab}}=2\sqrt{2\left(a+b\right)\cdot\sqrt{ab}}=VP\)

Xảy ra khi \(a=b\)

Nguyễn Huy Thắng
6 tháng 9 2017 lúc 16:56

a)\(\dfrac{a^2+3}{\sqrt{a^2+3}}=\sqrt{a^2+3}\ge\sqrt{3}< 2\)\

sai đề

Nguyễn Thu Ngà
Xem chi tiết
Aki Tsuki
6 tháng 8 2018 lúc 22:59

Vì: x > y => x - y > 0

\(A=\dfrac{x^2+y^2}{x-y}=\dfrac{x^2-2xy+y^2+2xy}{x-y}=\dfrac{\left(x-y\right)^2+2}{x-y}=\left(x-y\right)+\dfrac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\dfrac{2}{x-y}}=2\sqrt{2}\) (đpcm)

hoàng quỳnh trang
Xem chi tiết
Lê Thị Thục Hiền
8 tháng 9 2019 lúc 12:37

a,Có \(\frac{a+8}{\sqrt{a-1}}\ge6\) (a>1) (1)

<=> \(a+8\ge6\sqrt{a-1}\)

<=> \(a^2+16a+64\ge36a-36\)

<=> \(a^2-20a+100\ge0\)

<=> \(\left(a-10\right)^2\ge0\)(luôn đúng với mọi a)

Dấu "="xảy ra <=> a=10

=> (1) đc CM

b, Áp dụng bđt cosi với hai số dương có

\(\sqrt{a^2+1}\le\frac{a^2+1+1}{2}=\frac{a^2+2}{2}\)

=> \(\frac{a^2+2}{\sqrt{a^2+1}}\ge\frac{a^2+2}{\frac{a^2+2}{2}}=\frac{2\left(a^2+2\right)}{a^2+2}=2\)

Dấu "=" xảy ra <=> a=0

Lưu Thị Thảo Ly
Xem chi tiết
Lightning Farron
23 tháng 6 2017 lúc 18:34

$\sum \sqrt{\frac{ab+2c^2}{1+ab-c^2}}\geq ab+bc+ca+2$ - Bất đẳng thức và cực trị - Diễn đàn Toán học