CM: \(\dfrac{a^2+2}{\sqrt{a^2+1}}\ge2\)
vs mọi a
\(a)\)\(Cho\) \(a>b,ab=1\)
\(C.m:\)\(\dfrac{a^2+b^2}{a-b}\ge2\sqrt{2}\)
\(b)C.m:\dfrac{a^2+2}{\sqrt{a^2+1}}\ge2\)
CM BĐT
a/ \(\dfrac{a^2+2}{\sqrt{a^2+1}}\ge2\) \(\forall a\)
b/ \(\dfrac{a^2+5}{\sqrt{a^2+1}}\ge4\) \(\forall a\)
a) \(\dfrac{a^2+2}{\sqrt{a^2+1}}=\dfrac{a^2+1+1}{\sqrt{a^2+1}}=\sqrt{a^2+1}+\dfrac{1}{\sqrt{a^2+1}}\ge2\)
b) Tương tự
Câu 1: Rút gọn biểu thức
a) \(N=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
b) \(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
Câu 2:
a) Cho a > 0. Chứng minh: \(a+\dfrac{1}{a}\ge2\)
b) Cho \(a\ge0\) , \(b\ge0\) . Chứng minh: \(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)
c) Cho a, b > 0. Chứng minh: \(\sqrt{a}+\sqrt{b}\le\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\)
d) Chứng minh: \(\dfrac{a^2+2}{\sqrt{a^2+1}}\ge2\) với mọi a
2, a, \(a+\dfrac{1}{a}\ge2\)
\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)
\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)
\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)
vậy...................
Câu 1:
\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+5}=3\)
\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)
2b)
Biến đổi tương đương:
\(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\) (1)
\(\Leftrightarrow\dfrac{a+b}{2}\ge\dfrac{a+2\sqrt{ab}+b}{4}\)
\(\Leftrightarrow2a+2b\ge a+2\sqrt{ab}+b\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) luôn đúng
=> (1) đúng
Dấu "=" xảy ra khi a = b.
2c)
Áp dụng BĐT Cauchy Shwarz dạng Engel, ta có:
\(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}=\sqrt{a}+\sqrt{b}\) (đpcm)
Dấu "=" xảy ra khi a = b.
2d)
Áp dụng BĐT AM - GM, ta có:
\(\dfrac{a^2+2}{\sqrt{a^2+1}}=\dfrac{a^2+1}{\sqrt{a^2+1}}+\dfrac{1}{\sqrt{a^2+1}}=\sqrt{a^2+1}+\dfrac{1}{\sqrt{a^2+1}}\ge2\) (đpcm)
Dấu "=" xảy ra khi a = 0
cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=1\).CMR
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}+\dfrac{\sqrt{bc+2a^2}}{\sqrt{1+bc-a^2}}+\dfrac{\sqrt{ca+2b^2}}{\sqrt{1+ca-b^2}}\ge2+ab+bc+ca\)
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}=\dfrac{\sqrt{ab+2c^2}}{\sqrt{a^2+b^2+ab}}=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+2c^2\right)}}\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)
\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+a^2+b^2+2c^2}=\dfrac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)
Tương tự và cộng lại:
\(VT\ge ab+bc+ca+2\left(a^2+b^2+c^2\right)=2+ab+bc+ca\)
Cho \(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{a^2-\sqrt{a}}{a+\sqrt{a}+1}+\dfrac{1}{\sqrt{a}}\)
Rút gọn A và chứng minh \(A\ge2\sqrt{2}\)
điều kiện xác định : \(a>0\)
ta có : \(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{a^2-\sqrt{a}}{a+\sqrt{a}+1}+\dfrac{1}{\sqrt{a}}\)
\(\Leftrightarrow A=\dfrac{\sqrt{a}\left(\sqrt{a}^3+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(\sqrt{a}^3-1\right)}{a+\sqrt{a}+1}+\dfrac{1}{\sqrt{a}}\)
\(\Leftrightarrow A=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{a+\sqrt{a}+1}+\dfrac{1}{\sqrt{a}}\)\(\Leftrightarrow A=\sqrt{a}\left(\sqrt{a}+1\right)-\sqrt{a}\left(\sqrt{a}-1\right)+\dfrac{1}{\sqrt{a}}\)
\(\Leftrightarrow A=a+\sqrt{a}-a+\sqrt{a}+\dfrac{1}{\sqrt{a}}=2\sqrt{a}+\dfrac{1}{\sqrt{a}}\)
áp dụng bất đẳng thức cô si ta có : \(A=2\sqrt{a}+\dfrac{1}{\sqrt{a}}\ge2\sqrt{2}\Rightarrow\left(đpcm\right)\)
Chứng minh:
a, \(\dfrac{a^2+3}{\sqrt{a^2+3}}>2\)
b,\(\dfrac{\sqrt{a}}{\sqrt{b}}+\dfrac{\sqrt{b}}{\sqrt{a}}\ge2\) (a , b >0)
c,\(\left(\sqrt{a}+\sqrt{b}\right)^2\ge2\sqrt{2\left(a+b\right).\sqrt{ab}}\)
b)Áp dụng BĐT AM-GM ta có:
\(\dfrac{\sqrt{a}}{\sqrt{b}}+\dfrac{\sqrt{b}}{\sqrt{a}}\ge2\sqrt{\dfrac{\sqrt{a}}{\sqrt{b}}\cdot\dfrac{\sqrt{b}}{\sqrt{a}}}=2\)
Xảy ra khi \(a=b\)
c)Áp dụng BĐT \(x^2+y^2\ge2xy\) có:
\(VT=\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\)
\(\ge2\sqrt{\left(a+b\right)\cdot2\sqrt{ab}}=2\sqrt{2\left(a+b\right)\cdot\sqrt{ab}}=VP\)
Xảy ra khi \(a=b\)
a)\(\dfrac{a^2+3}{\sqrt{a^2+3}}=\sqrt{a^2+3}\ge\sqrt{3}< 2\)\
sai đề
cho x>y thỏa mãn xy=1. cm:
A=\(\dfrac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
Vì: x > y => x - y > 0
\(A=\dfrac{x^2+y^2}{x-y}=\dfrac{x^2-2xy+y^2+2xy}{x-y}=\dfrac{\left(x-y\right)^2+2}{x-y}=\left(x-y\right)+\dfrac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\dfrac{2}{x-y}}=2\sqrt{2}\) (đpcm)
chứng minh bất đẳng thức:
a, \(\frac{a+8}{\sqrt{a-1}}\ge6\) với a > 1
b, \(\frac{a^2+2}{\sqrt{a^2+1}}\ge2\) với mọi a
giúp mình vs nhé
a,Có \(\frac{a+8}{\sqrt{a-1}}\ge6\) (a>1) (1)
<=> \(a+8\ge6\sqrt{a-1}\)
<=> \(a^2+16a+64\ge36a-36\)
<=> \(a^2-20a+100\ge0\)
<=> \(\left(a-10\right)^2\ge0\)(luôn đúng với mọi a)
Dấu "="xảy ra <=> a=10
=> (1) đc CM
b, Áp dụng bđt cosi với hai số dương có
\(\sqrt{a^2+1}\le\frac{a^2+1+1}{2}=\frac{a^2+2}{2}\)
=> \(\frac{a^2+2}{\sqrt{a^2+1}}\ge\frac{a^2+2}{\frac{a^2+2}{2}}=\frac{2\left(a^2+2\right)}{a^2+2}=2\)
Dấu "=" xảy ra <=> a=0
1) tìm min \(P=\dfrac{2009x^2-6039x+6\sqrt{x^3-2x^2+2x-4}-8024}{x^2-3x-4}\)
2) cho các số thực dương a,b,c thỏa mãn a2+b2+c2=1
cm \(\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}+\sqrt{\dfrac{bc+2a^2}{1+bc-a^2}}+\sqrt{\dfrac{ca+2b^2}{1+ca-b^2}}\ge2+ab+bc+ca\)
$\sum \sqrt{\frac{ab+2c^2}{1+ab-c^2}}\geq ab+bc+ca+2$ - Bất đẳng thức và cực trị - Diễn đàn Toán học