a)x4-4x3+12x-9
b)(x+2)2=9(x2-4x+4)
Giải các phương trình sau:
a, (9x2 - 4)(x + 1) = (3x +2)(x2 - 1)
b, (x - 1)2 - 1 + x2 = (1 - x)(x + 3)
c, (x2 - 1)(x + 2)(x - 3) = (x - 1)(x2 - 4)(x + 5)
d, x4 + x3 + x + 1 = 0
e, x3 - 7x + 6 = 0
f, x4 - 4x3 + 12x - 9 = 0
g, x5- 5x3 + 4x = 0
h, x4 - 4x3 + 3x2 + 4x - 4 = 0
a, \(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(\left(9x^2-4\right)-\left(\left(3x+2\right)\left(x-1\right)\right)\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-\left(3x^2-x-2\right)\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-3x^2+x+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)=0;3x^2+x-2=0\)
=> x=-1
với \(3x^2+x-2=0\)
ta sử dụng công thức bậc 2 suy ra : \(x=\dfrac{2}{3};x=-1\)
Vậy ghiệm của pt trên \(S\in\left\{-1;\dfrac{2}{3}\right\}\)
b: \(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)
\(\Leftrightarrow2x^2-2x=-x^2-2x+3\)
\(\Leftrightarrow3x^2=3\)
hay \(x\in\left\{1;-1\right\}\)
c: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)
hay \(x\in\left\{1;-2;\dfrac{7}{5}\right\}\)
giải phương trình sau:
a. (9x2-4)(x+1) = (3x+2) (x2-1)
b. (x-1)2-1+x2 = (1-x)(x+3)
c. (x2-1)(x+2)(x-3) = (x-1)(x2-4)(x+5)
d. x4+x3+x+1=0
e. x3-7x+6 = 0
f. x4-4x3+12x-9 = 0
g. x5-5x3+4x = 0
h. x4-4x3+3x2+4x-4 = 0
m.n jup vs
Gi ải các phương trình sau
e) x3-7x+6=0
f) x4-4x3+12x-9=0
g)x5-5x3+4x=0
h) x4-4x3+3x2+4x-4=0
a.
\(x^3-7x+6=0\)
\(\Leftrightarrow x^3-3x^2+2x+3x^2-9x+6=0\)
\(\Leftrightarrow x\left(x^2-3x+2\right)+3\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x^2-x-2x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[x\left(x-1\right)-2\left(x-1\right)\right]\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)
f.
\(x^4-4x^3+12x-9=0\)
\(\Leftrightarrow x^4-4x^3+3x^2-3x^2+12x-9=0\)
\(\Leftrightarrow x^2\left(x^2-4x+3\right)-3\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow\left(x^2-4x+3\right)\left(x^2-3\right)=0\)
\(\Leftrightarrow\left(x^2-x-3x+3\right)\left(x^2-3\right)=0\)
\(\Leftrightarrow\left[x\left(x-1\right)-3\left(x-1\right)\right]\left(x^2-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x^2-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=3\\x=\pm\sqrt{3}\end{matrix}\right.\)
g.
\(x^5-5x^3+4x=0\)
\(\Leftrightarrow x\left(x^4-5x^2+4\right)=0\)
\(\Leftrightarrow x\left(x^4-x^2-4x^2+4\right)=0\)
\(\Leftrightarrow x\left[x^2\left(x^2-1\right)-4\left(x^2-1\right)\right]=0\)
\(\Leftrightarrow x\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm1\\x=\pm2\end{matrix}\right.\)
Thực hiện phép chia:
a) ( 4 x 3 - 3 x 2 +1): ( x 2 + 2x -1);
b) (2 x 4 - 11 x 3 + 19 x 2 - 20x + 9): ( x 2 - 4x +1).
a) Đa thức thương 4x – 11 và đa thức dư 26x – 10.
b) Đa thức thương 2 x 2 – 3x + 5 và đa thức dư 3x + 4.
Phân tích
a,(x2 + x + 2)3 - (x+1)3 = x6 +1 b,(x2 + 10x + 8)2 - (8x + 4)(x2 + 8x+7)
c, A= x4 + 2x3 + 3x2 + 2x+4 d,B= x4 + 4x3 + +8x2 + 8x + 4
e, C= x4 - 2x3 + 5x2 - 4x + 4
1,tìm nhân tử chung
a, 8ab3-2abb
b,(x2+x+4)2+8x(x2+x+4)+15x2
c, 25x2-5x-49y2-7y
d, 8x2-36x2+54x-27
e, 4x8+1
2,cho x là số nguyên
B=x4-4x3-2x+12x+9 là bình phương
Bài 2:
b: \(=\left(x^2+x+4+3x\right)\left(x^2+x+4+5x\right)\)
\(=\left(x^2+4x+4\right)\left(x^2+6x+4\right)\)
\(=\left(x+2\right)^2\cdot\left(x^2+6x+4\right)\)
c: \(=25x^2-49y^2-\left(5x+7y\right)\)
=(5x+7y)(5x-7y-1)
d: \(8x^3-36x^2+54x-27=\left(2x-3\right)^3\)
Bài 4: đặt nhân tử chung
c)x(x-2)+(x-2)2
d) 2x(x-y)2-5(y-x)
Bài 5 :
a) x2-6x-2xy+12y
b) 10ax-5ay-2x+y
c)x4+x3y-x-y
d) x3+2x2-4x-8
e) xy-5x-y2+5y
f) ax-bx-2cx-2a+2b+4c
g) 5x2y+5xy2-b2x-b2y
h) 4x3-4x2-9x+9
Bài 4
c) x(x - 2) + (x - 2)²
= (x - 2)(x + x - 2)
= (x - 2)(2x - 2)
= 2(x - 2)(x - 1)
d) 2x(x - y)² - 5(y - x)
= 2x(x - y)² + 5(x - y)
= (x - y)(2x + 5)
Bài 5
a) x² - 6x - 2xy + 12y
= (x² - 6x) - (2xy - 12y)
= x(x - 6) - y(x - 6)
= (x - 6)(x - y)
b) 10ax - 5ay - 2x + y
= (10ax - 5ay) - (2x - y)
= 5a(2x - y) - (2x - y)
= (2x - y)(5a - 1)
c) x⁴ + x³y - x - y
= (x⁴ + x³y) - (x + y)
= x³(x + y) - (x + y)
= (x + y)(x³ - 1)
= (x + y)(x - 1)(x² + x + 1)
d) x³ + 2x² - 4x - 8
= (x³ + 2x²) - (4x + 8)
= x²(x + 2) - 4(x + 2)
= (x + 2)(x² - 4)
= (x + 2)(x + 2)(x - 2)
= (x + 2)²(x - 2)
e) xy - 5x - y² + 5y
= (xy - 5x) - (y² - 5y)
= x(y - 5) - y(y - 5)
= (y - 5)(x - y)
f) ax - bx - 2cx - 2a + 2b + 4c
= (ax - bx - 2cx) - (2a - 2b - 4c)
= x(a - b - 2c) - 2(a - b - 2c)
= (a - b - 2c)(x - 2)
g) 5x²y + 5xy² - b²x - b²y
= (5x²y + 5xy²) - (b²x + b²y)
= 5xy(x + y) - b²(x + y)
= (x + y)(5xy - b²)
h) 4x³ - 4x² - 9x + 9
= (4x³ - 4x²) - (9x - 9)
= 4x²(x - 1) - 9(x - 1)
= (x - 1)(4x² - 9)
= (x - 1)(2x - 3)(2x + 3)
Bài 3 : Cho x là số nguyên.Cmr :
B= x4 - 4x3 - 2x2 + 12x + 9 là bình phương số nguyên
Bài 4 : Cho x,y,z là số nguyên.Cmr :
C= 4x.(x + y).(x + y + z).(x + z) + y2z2 là một số chính phương
Giúp mình nha.Mai là hạn cuối rồi!
Bài 3:
\(B=x^4-4x^3-2x^2+12x+9\)
\(=x^4-3x^3-x^3+3x^2-5x^2+15x-3x+9\)
\(=\left(x-3\right)\left(x^3-x^2-5x-3\right)\)
\(=\left(x-3\right)\left(x^3-3x^2+2x^2-6x+x-3\right)\)
\(=\left(x-3\right)^2\cdot\left(x+1\right)^2\)
\(=\left(x^2-2x-3\right)^2\)
Bài 3:
\(B=x^4-4x^3-2x^2+12x+9=\left(x^4+x^3\right)-\left(5x^3+5x^2\right)+\left(3x^2+3x\right)+\left(9x+9\right)=\left(x^3-5x^2+3x+9\right)\left(x+1\right)=\left[\left(x^3+x^2\right)-\left(6x^2+6x\right)+\left(9x+9\right)\right]\left(x+1\right)=\left(x^2-6x+9\right)\left(x+1\right)^2=\left(x-3\right)^2\left(x+1\right)^2=\left[\left(x-3\right)\left(x+1\right)\right]^2\)
Rút gọn các phân thức sau
1) 9 - ( x + 5)2 / x2 + 4x + 4
2) 32x - 8x2 + 2x3 / x3 + 64
3) 5x3 + 5x / x4 -1
4) 3x2 - 12x + 12 / x4 - 8x
5) 2a2 - 2ab / ac + ad - bc -bd
6) x2 - xy / y2 - x2
7) 2 - 2a / a3 - 1
8) x7 - x4 / x6 - 1
9) ( x + 2 )2 - ( x - 2)2 / 16x
10) 24,5x2 - 0,5y2 / 3,5x2 - 0,5xy
11) a3 - 3a2 + 2a - 6 / a2 +2
12) ( a - b) ( c - d) / (b2- a2) ( d2 - c2)
Giúp mình với ạ, mình cảm ơn !
1: \(=\dfrac{-\left[\left(x+5\right)^2-9\right]}{\left(x+2\right)^2}=\dfrac{-\left(x+5-3\right)\left(x+5+3\right)}{\left(x+2\right)^2}\)
\(=\dfrac{-\left(x+2\right)\left(x+8\right)}{\left(x+2\right)^2}=\dfrac{-\left(x+8\right)}{x+2}\)
2: \(=\dfrac{2x\left(x^2-4x+16\right)}{\left(x+4\right)\left(x^2-4x+16\right)}=\dfrac{2x}{x+4}\)
3: \(=\dfrac{5x\left(x^2+1\right)}{\left(x^2-1\right)\left(x^2+1\right)}=\dfrac{5x}{x^2-1}\)
4: \(=\dfrac{3\left(x^2-4x+4\right)}{x\left(x^3-8\right)}=\dfrac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+4\right)}\)
\(=\dfrac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}\)
5: \(=\dfrac{2a\left(a-b\right)}{a\left(c+d\right)-b\left(c+d\right)}=\dfrac{2a\left(a-b\right)}{\left(c+d\right)\left(a-b\right)}=\dfrac{2a}{c+d}\)
6: \(=\dfrac{x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}\cdot\left(-1\right)=\dfrac{-x}{x+y}\)
7: \(=\dfrac{2\left(1-a\right)}{-\left(1-a^3\right)}=\dfrac{-2\left(1-a\right)}{\left(1-a\right)\left(1+a+a^2\right)}=-\dfrac{2}{1+a+a^2}\)
8: \(=\dfrac{x^4\left(x^3-1\right)}{\left(x^3-1\right)\left(x^3+1\right)}=\dfrac{x^4}{x^3+1}\)
9: \(=\dfrac{\left(x+2-x+2\right)\left(x+2+x-2\right)}{16x}=\dfrac{4\cdot2x}{16x}=\dfrac{1}{2}\)
10: \(=\dfrac{0.5\left(49x^2-y^2\right)}{0.5x\left(7x-y\right)}=\dfrac{1}{x}\cdot\dfrac{\left(7x-y\right)\left(7x+y\right)}{7x-y}\)
\(=\dfrac{7x+y}{x}\)
Đơn giản biểu thức:
a) x + 1 2 x 2 − 1 2 x + 1 4 ; b) (x – 3y)( x 2 + 3xy + 9 y 2 );
c) ( x 2 – 3)( x 4 + 3 x 2 + 9); d) (2x – 1)(4 x 2 + 2x + 1).
a) x 2 - 1 4 b) x 2 - 9 y 2
c) x 4 - 9 d) 4 x 2 - 1