1.a) Chứng minh \(\dfrac{sin^4-cos^4}{sin+cos}=sin-cos\)
b) \(sin^6+cos^6+3cos^2\cdot sin^2=1\)
Chứng minh:
1.\(\dfrac{\cot^2x-\sin^2x}{\cot^2x-\tan^2x}=\sin^2x\cdot\cos^2x\)
2.\(\dfrac{1-\sin x}{\cos x}-\dfrac{\cos x}{1+\sin x}=0\)
3.\(\dfrac{\tan x}{\sin x}-\dfrac{\sin x}{\cot x}=\cos x\)
4.\(\dfrac{\tan x}{1-\tan^2x}\cdot\dfrac{\cot^2x-1}{\cot x}=1\)
5.\(\dfrac{1+\sin^2x}{1-\sin^2x}=1+2\tan^2x\)
Câu 1 đề sai, chắc chắn 1 trong 2 cái \(cot^2x\) phải có 1 cái là \(cos^2x\)
2.
\(\dfrac{1-sinx}{cosx}-\dfrac{cosx}{1+sinx}=\dfrac{\left(1-sinx\right)\left(1+sinx\right)-cos^2x}{cosx\left(1+sinx\right)}=\dfrac{1-sin^2x-cos^2x}{cosx\left(1+sinx\right)}\)
\(=\dfrac{1-\left(sin^2x+cos^2x\right)}{cosx\left(1+sinx\right)}=\dfrac{1-1}{cosx\left(1+sinx\right)}=0\)
3.
\(\dfrac{tanx}{sinx}-\dfrac{sinx}{cotx}=\dfrac{tanx.cotx-sin^2x}{sinx.cotx}=\dfrac{1-sin^2x}{sinx.\dfrac{cosx}{sinx}}=\dfrac{cos^2x}{cosx}=cosx\)
4.
\(\dfrac{tanx}{1-tan^2x}.\dfrac{cot^2x-1}{cotx}=\dfrac{tanx}{1-tan^2x}.\dfrac{\dfrac{1}{tan^2x}-1}{\dfrac{1}{tanx}}=\dfrac{tanx}{1-tan^2x}.\dfrac{1-tan^2x}{tanx}=1\)
5.
\(\dfrac{1+sin^2x}{1-sin^2x}=\dfrac{1+sin^2x}{cos^2x}=\dfrac{1}{cos^2x}+tan^2x=\dfrac{sin^2x+cos^2x}{cos^2x}+tan^2x\)
\(=tan^2x+1+tan^2x=1+2tan^2x\)
Chứng minh:
a)\(cot^2\alpha-cos^2\alpha\cdot cot^2\alpha=cos^2\alpha\)
b)\(tan^2\alpha-sin^2\alpha\cdot tan^2\alpha=sin^2\alpha\)
c) \(\dfrac{1-cos^2}{sin\alpha}\) = \(\dfrac{sin\alpha}{1+cos\alpha}\)
d)\(tan^2\alpha-sin^2\alpha=tan^2\cdot sin^2\alpha\)
e) \(\sin^6\alpha+cos^6\alpha+3sin^2\cdot cos^2\alpha=1\)
chứng minh 4 = \(\dfrac{\left(sin+cos\right)^2-\left(sin-cos\right)^2}{sin\cdot cos}\)
\(\dfrac{\left(sin+cos\right)^2-\left(sin-cos\right)^2}{sin.cos}\)
\(=\dfrac{\left(sin+cos-sin+cos\right)\left(sin+cos+sin-cos\right)}{sin.cos}\)
\(=\dfrac{2sin.2cos}{sin.cos}=\dfrac{4sin.cos}{sin.cos}=4\)
1. Cho tam giác $ABC$. Chứng minh rằng $\sin ^{2} A+\sin ^{2} B-\sin ^{2} C=2\sin A.\sin B.\cos C$.
2. Chứng minh rằng:
a. $\sin \alpha .\sin \left(\dfrac{\pi }{3} -\alpha \right).\sin \left(\dfrac{\pi }{3} +\alpha \right)=\dfrac{1}{4} \sin 3\alpha $
b. $\sin 5\alpha -2\sin \alpha \left({\rm cos} {\rm 4}\alpha +\cos 2\alpha \right)=\sin \alpha $
1. CM:
\(\dfrac{1}{2}\le\dfrac{\sin x+2\cos x+3}{2\sin x\cos x+3}\le2\)
2. Giải PT:
a) \(\dfrac{1}{\cos x}=4\sin x+6\cos x\)
b) \(\sin^3\left(x-\dfrac{\pi}{4}\right)=\sqrt{2}\sin x\)
c) \(\dfrac{1}{\cos x}+\dfrac{1}{\sin2x}=\dfrac{2}{\sin4x}\)
1.
Kiểm tra lại đề bài, câu này phải là \(\dfrac{sinx+2cosx+3}{2sinx+cosx+3}\) mới đúng
2.a
ĐKXĐ: \(cosx\ne0\)
\(\Leftrightarrow\dfrac{1}{cos^2x}=4tanx+6\)
\(\Leftrightarrow1+tan^2x=4tanx+6\)
\(\Leftrightarrow tan^2x-4tanx-5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(5\right)+k\pi\end{matrix}\right.\)
2b.
Đặt \(x-\dfrac{\pi}{4}=t\Rightarrow x=t+\dfrac{\pi}{4}\)
\(sin^3t=\sqrt{2}sin\left(t+\dfrac{\pi}{4}\right)\)
\(\Leftrightarrow sin^3t=sint+cost\)
\(\Leftrightarrow sint\left(1-cos^2t\right)=sint+cost\)
\(\Leftrightarrow sint.cos^2t+cost=0\)
\(\Leftrightarrow cost\left(sint.cost+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cost=0\\sin2t=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cos\left(x-\dfrac{\pi}{4}\right)=0\\sin\left(2x-\dfrac{\pi}{2}\right)=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cos\left(x-\dfrac{\pi}{4}\right)=0\\cos2x=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow...\)
2c.
ĐKXĐ: \(sin4x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{4}\)
\(\dfrac{4sinx.cos2x}{sin4x}+\dfrac{2cos2x}{sin4x}=\dfrac{2}{sin4x}\)
\(\Leftrightarrow2sinx.cos2x+cos2x=1\)
\(\Leftrightarrow2sinx.cos2x+1-2sin^2x=1\)
\(\Leftrightarrow sinx\left(cos2x-sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\left(loại\right)\\cos2x-sinx=0\end{matrix}\right.\)
\(\Leftrightarrow1-2sin^2x-sinx=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\left(loại\right)\\sinx=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{\pi}{6}+k2\pi\)
1. Cho \(\tan a\) =\(\dfrac{1}{2}\) . Tính \(\dfrac{\cos a+\sin a}{\cos a-\sin a}\)
2. Chứng minh
\(\sin^6a+\cos^6a+3\cdot\sin^2a\cdot\cos^2a\)= 1
3. Cho tam giác ABC vuông tại A . Vẽ hình và thiết lập các hệ thúc tính TSLG của góc B từ đó suy ra các hệ thức tính TSLG góc C
Bài 2:
\(=\left(sin^2a+cos^2a\right)^3-3sin^2a\cdot cos^2a\left(sin^2a+cos^2a\right)+3sin^2a\cdot cos^2a\)
\(=1-3\cdot sin^2a\cdot cos^2a+3\cdot sin^2a\cdot cos^2a\)
=1
Chứng minh các hệ thức:
a) \(\dfrac{cos\text{ α }}{1-sin\text{ α}}=\dfrac{1+sin\text{ α}}{cos\text{ α}}\)
b)\(\dfrac{\left(sin\text{ α }+cos\text{ α }\right)^2-\left(sin\text{ α }-cos\text{ α }\right)^2}{sin\text{ α }cos\text{ α }}=4\)
a: \(\dfrac{\cos\alpha}{1-\sin\alpha}=\dfrac{1+\sin\alpha}{\cos\alpha}\)
\(\Leftrightarrow\cos^2\alpha=1-\sin^2\alpha\)(đúng)
b: Ta có: \(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha\cdot\cos\alpha}\)
\(=\dfrac{4\cdot\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}\)
=4
Chứng minh:
sin^4-sin^6+cos^4-cos^6=sin^2.cos^2
\(VT=sin^4x-sin^6x+cos^4x-cos^6x=sin^4x+cos^4x-sin^6x-cos^6x\)
\(=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x-\left[\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\right]\)
\(=1^2-2sin^2x.cos^2x-\left(1^3-3sin^2x.cos^2x\right)\)
\(=1-2sin^2x.cos^2x-1+3sin^2x.cos^2x=sin^2x.cos^2x=VP\left(đpcm\right)\)
1. cos 2a + cos 2b = - 2 cos(a+b) cos( a-b)
2. cos2a + sin2b = 1
3. cos a2 + sin b2= 1
4. cos2 a + sin2 a = 1
5. cos 2a = cos2 a - 2 sin 2a
6. sin 2a = - 2 sin a. cos a.
7. sin 2a = cos2 a - sin2 a
8. sin 2a - sin 2b= 2 sin ( a+b) cos ( a - b)
9. sin 2a - sin 2b= 2 cos( a+b) sin ( a - b)
10. cos a2 + sin a2 = 1
Câu số mấy đúng?