Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\ne1\) với a,b,c,d\(\ne0\)
Chứng minh từ tỉ lệ thức \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\ne1\) ta có tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
mong mọi ng giải hộ
\(\Leftrightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a}{c}=\dfrac{b}{d}=>\dfrac{a}{b}=\dfrac{c}{d}\)
Lời giải:
$\frac{a+b}{a-b}=\frac{c+d}{c-d}$
$\Rightarrow (a+b)(c-d)=(a-b)(c+d)$
$\Rightarrow ac-ad+bc-bd=ac+ad-bc-bd$
$\Rightarrow 2ad=2bc$
$\Rightarrow ad=bc$
$\Rightarrow \frac{a}{b}=\frac{c}{d}$ (đpcm)
\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b+a-b}{c+d+c-d}=\dfrac{2a}{2c}=\dfrac{a}{c}\left(1\right)\)
\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b-a+b}{c+d-c+d}=\dfrac{2b}{2d}=\dfrac{b}{d}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) với \(a,b,c,d\ne0\). Chứng minh \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\)
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có VT:
\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}\)
\(=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\) (1)
VT: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\) (2)
Từ (1) và (2)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\left(đpcm\right)\)
Có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ab=cd\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)\(\Leftrightarrow\left(\dfrac{a}{c}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)
Vậy...
Cho tỉ lệ thức: \(\dfrac{a}{b}=\dfrac{c}{d}\left(b,d\ne0\right)\). Chứng minh rằng:
a) \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
a: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)
\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}\)
Do đó: \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
Chứng minh rằng từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d};\left(a-b\ne0;c-d\ne0\right)\) ta có thể suy ra tỉ lệ thức \(\dfrac{a+b}{c-b}=\dfrac{c+d}{c-d}\) ?
Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\) suy ra \(\dfrac{a}{c}=\dfrac{b}{d}\)
Theo tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Suy ra: \(\dfrac{a+b}{a-c}=\dfrac{c+d}{c-d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk\) và \(c=dk\)
Nên \(\dfrac{a+b}{c-d}=\dfrac{bk+b}{dk-d}=\dfrac{b\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)
\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)
\(\Rightarrow\dfrac{a+b}{c-d}=\dfrac{c+d}{c-d}\) (với \(a-b\ne0,c-d\ne0\))
Vậy \(\dfrac{a}{b}=\dfrac{c}{d}thì\)\(\dfrac{a+b}{c-d}=\dfrac{c+d}{c-d}\) ( \(a-b\ne0,c-d\ne0\))
Theo tính chất của dãy tỉ số bằng nhau ta có
Từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\), hãy suy ra các tỉ lệ thức sau :
a) \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
b) \(\dfrac{a}{a+b}=\dfrac{c}{c+d},\left(a+b\ne0,c+d\ne0\right)\)
a, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) ( k # 0 )
\(\Rightarrow\) \(a=b.k\)
\(c=d.k\)
Ta có: \(\dfrac{a+b}{b}=\dfrac{b.k+b}{b}=\dfrac{b.\left(k+1\right)}{b}=k+1\) (1)
\(\dfrac{c+d}{d}=\dfrac{d.k+d}{d}=\dfrac{d.\left(k+1\right)}{d}=k+1\) (2)
Từ (1) và (2) \(\Rightarrow\) \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
b,
, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) ( k # 0 )
\(\Rightarrow\) \(a=b.k\)
\(c=d.k\)
Ta có: \(\dfrac{a}{a+b}=\dfrac{b.k}{b.k+b}=\dfrac{b.k}{b.\left(k+1\right)}=\dfrac{k}{k+1}\) (1)
\(\dfrac{c}{c+d}=\dfrac{d.k}{d.k+d}=\dfrac{d.k}{d.\left(k+1\right)}=\dfrac{k}{k+1}\) (2)
Từ (1) và (2) \(\Rightarrow\) \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
Cho \(a,b,c,d\ne0\). Từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) hãy suy ra tỉ lệ thức \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) thì \(a=b.k\) , \(c=d.k\)
Ta tính giá trị của các tỉ số \(\dfrac{a-b}{a};\dfrac{c-d}{c}\) theo \(k\)
\(\dfrac{a-b}{a}=\dfrac{b.k-b}{b.k}=\dfrac{b.\left(k-1\right)}{b.k}=\dfrac{k-1}{k}\left(1\right)\)
\(\dfrac{c-d}{c}=\dfrac{d.k-d}{d.k}=\dfrac{d\left(k-1\right)}{d.k}=\dfrac{k-1}{k}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) suy ra \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\b=ck\end{matrix}\right.\)
Ta có : \(\dfrac{a-b}{a}=\dfrac{bk-b}{bk}=\dfrac{b\left(k-1\right)}{k}=\dfrac{k-1}{k}\left(1\right)\)
\(\dfrac{c-d}{c}=\dfrac{dk-d}{dk}=\dfrac{d\left(k-1\right)}{dk}=\dfrac{k-1}{k}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra : \(\dfrac{a-b}{a}=k=\dfrac{c-d}{c}\)
\(\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\left(ĐPCM\right)\)
Vậy \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
\(1-\dfrac{b}{a}=1-\dfrac{d}{c}\Leftarrow\left\{{}\begin{matrix}\dfrac{c-d}{c}=1-\dfrac{d}{c}\\\dfrac{a-b}{a}=1-\dfrac{b}{a}\\\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{b}{a}=\dfrac{d}{c}\end{matrix}\right.\)
Suy ra \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
Vậy: Từ \(\dfrac{a}{b}=\dfrac{c}{d}\)có thể suy ra\(\dfrac{a-b}{a}=\dfrac{c-d}{c}\).
Cho tỉ lệ thức \(\dfrac{a+b}{c+d}=\dfrac{a-2b}{c-2d}\) với \(b,d\ne0\).CMR: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\dfrac{a+b}{c+d}=\dfrac{a-2b}{c-2d}\Rightarrow\left(a+b\right)\left(c-2d\right)=\left(c+d\right)\left(a-2b\right)\\ ac+bc-2ad-2bd=ac+ad-2bc-2bd\\ bc-2ad=ad-2bc\\ 3bc=3ad\\ bc=ad\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)
\(\dfrac{a+b}{c+d}=\dfrac{a-2b}{c-2d}\)
\(\Leftrightarrow\left(a+b\right)\left(c-2d\right)=\left(c+d\right)\left(a-2b\right)\)
\(\Leftrightarrow ac-2ad+bc-2bd=ac-2bc+ad-2bd\)
\(\Leftrightarrow2ad+ad=2bc+bc\)
\(\Leftrightarrow3ad=3bc\)
\(\Leftrightarrow ad=bc\rightarrowđpcm\)
Từ \(\dfrac{a+b}{c+d}=\dfrac{a-2b}{c-2d}\)
\(\Rightarrow\left(a+b\right)\left(c-2d\right)=\left(c+d\right)\left(a-2b\right)\)
=>\(ac-2ad+bc-2bd=ac-2bc+ad-2bd \)
\(\Rightarrow-3ad=-3bc\)
\(\Rightarrow ad=bc\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
Cho tỉ lệ thức: \(\dfrac{a}{b}=\dfrac{c}{d}\left(a,b,c,d\ne0\right)\)
Chứng minh:
1) \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
2) \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
a) \(\dfrac{a}{b}=\dfrac{c}{d}\left(a;b;c;d\ne0\right)\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
\(\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
\(\Rightarrow dpcm\)
b) \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Rightarrow\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
\(\Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
\(\Rightarrow dpcm\)
Lời giải:
Đặt $\frac{a}{b}=\frac{c}{d}=k$
$\Rightarrow a=bk; c=dk$. Khi đó:
1.
$\frac{a+b}{b}=\frac{bk+b}{b}=\frac{b(k+1)}{b}=k+1(1)$
$\frac{c+d}{d}=\frac{dk+d}{d}=\frac{d(k+1)}{d}=k+1(2)$
Từ $(1); (2)\Rightarrow \frac{a+b}{b}=\frac{c+d}{d}$
2.
$\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b(5k+3)}{b(5k-3)}=\frac{5k+3}{5k-3}(3)$
$\frac{5c+3d}{5c-3d}=\frac{5dk+3d}{5dk-3d}=\frac{d(5k+3)}{d(5k-3)}=\frac{5k+3}{5k-3}(4)$
Từ $(3); (4)\Rightarrow \frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}$ (đpcm)
Từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\left(a\ne0,b\ne\pm0\right)\)hãy rút ra tỉ lệ thức: \(\dfrac{a+c}{a-c}=\dfrac{b+d}{b-d}\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
\(\Rightarrow\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
\(\Rightarrow\dfrac{a+c}{a-c}=\dfrac{b+d}{b-d}\left(đpcm\right)\)
Vậy...
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
Từ đó suy ra : \(\dfrac{a+c}{a-c}=\dfrac{b+d}{b-d}\)
Do \(b;d\ne0;b\ne\pm d;a\ne c\) nên áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
\(\Rightarrow\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\Rightarrow\dfrac{a+c}{a-c}=\dfrac{b+d}{b-d}\)
Chúc bạn học tốt nha!!!