Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
piojoi

Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) với \(a,b,c,d\ne0\). Chứng minh \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\)

HT.Phong (9A5)
9 tháng 8 2023 lúc 18:29

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có VT:

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}\)

\(=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\) (1)

VT: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\) (2)

Từ (1) và (2) 

\(\Rightarrow\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\left(đpcm\right)\)

Toru
9 tháng 8 2023 lúc 18:27

Có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ab=cd\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)\(\Leftrightarrow\left(\dfrac{a}{c}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)

Vậy...


Các câu hỏi tương tự
minh
Xem chi tiết
Đào Trí Bình
Xem chi tiết
Xem chi tiết
Zata
Xem chi tiết
Liễu Lê thị
Xem chi tiết
Lê Hoàng Khánh Nam
Xem chi tiết
Lan Anh Phan
Xem chi tiết
Lê Minh Tuấn
Xem chi tiết
Nguyễn Hà Vy
Xem chi tiết