\(\dfrac{a+b}{c+d}=\dfrac{a-2b}{c-2d}\Rightarrow\left(a+b\right)\left(c-2d\right)=\left(c+d\right)\left(a-2b\right)\\ ac+bc-2ad-2bd=ac+ad-2bc-2bd\\ bc-2ad=ad-2bc\\ 3bc=3ad\\ bc=ad\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)
\(\dfrac{a+b}{c+d}=\dfrac{a-2b}{c-2d}\)
\(\Leftrightarrow\left(a+b\right)\left(c-2d\right)=\left(c+d\right)\left(a-2b\right)\)
\(\Leftrightarrow ac-2ad+bc-2bd=ac-2bc+ad-2bd\)
\(\Leftrightarrow2ad+ad=2bc+bc\)
\(\Leftrightarrow3ad=3bc\)
\(\Leftrightarrow ad=bc\rightarrowđpcm\)
Từ \(\dfrac{a+b}{c+d}=\dfrac{a-2b}{c-2d}\)
\(\Rightarrow\left(a+b\right)\left(c-2d\right)=\left(c+d\right)\left(a-2b\right)\)
=>\(ac-2ad+bc-2bd=ac-2bc+ad-2bd \)
\(\Rightarrow-3ad=-3bc\)
\(\Rightarrow ad=bc\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)