Cho a,b,c là các số thực dương. CMR:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}>2\)
( Đây là bài toán về BĐT mà mk không tìm thấy nên ghi đại bài )
P/s các bạn áp dụng BĐT Cauchy mà làm
Cho a,b,c là các số thực dương có tổng bằng 1. Tìm GTNN của biểu thức
\(P=\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{c^3}{\sqrt{a^2+3}}\)(Chứng minh BĐT dựa vào BĐT Cauchy)
vừa làm trên học24 xong mà ko đưa dc link thôi nhai lại vậy :v
Áp dụng BĐT AM-GM ta có:
\(\frac{a^3}{\sqrt{b^2+3}}+\frac{a^3}{\sqrt{b^2+3}}+\frac{b^2+3}{7\sqrt{7}}\)
\(\ge3\sqrt[3]{\frac{a^3}{\sqrt{b^2+3}}\cdot\frac{a^3}{\sqrt{b^2+3}}\cdot\frac{b^2+3}{7\sqrt{7}}}=\frac{3a^2}{\sqrt{7}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b^3}{\sqrt{c^2+3}}+\frac{b^3}{\sqrt{c^2+3}}+\frac{c^2+3}{7\sqrt{7}}\ge\frac{3b^2}{\sqrt{7}};\frac{c^3}{\sqrt{a^2+3}}+\frac{c^3}{\sqrt{a^2+3}}+\frac{a^2+3}{7\sqrt{7}}\ge\frac{3c^2}{\sqrt{7}}\)
Cộng theo vế 3 BĐT trên ta có:
\(2P+\frac{a^2+b^2+c^2+9}{7\sqrt{7}}\ge\frac{3\left(a^2+b^2+c^2\right)}{\sqrt{7}}\)
\(\Rightarrow P\ge\frac{\frac{\frac{\left(a+b+c\right)^2}{3}+9}{7\sqrt{7}}-\frac{3\cdot\frac{\left(a+b+c\right)^2}{3}}{\sqrt{7}}}{2}\ge\frac{\frac{\sqrt{7}}{21}}{2}=\frac{\sqrt{7}}{42}\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)
Có thiếu dấu . nào ko nhỉ :v, tự nhai lại nên vẫn thấy ngon :v
bài này
áp dụng cô si ta có
a³/b + ab ≥ 2a²
b³/c + bc ≥ 2b²
c³/a + ac ≥ 2c²
+ + + 3 cái lại
=> a³/b + b³/c + c³/a ≥ 2a² + 2b² + 2c² - ab - ac - bc
mặt khác ta có
ab + bc + ac ≤ a² + b² + c² (cái này chứng minh dễ dàng nhé)
thay vào
=> a³/b + b³/c + c³/a ≥ a² + b² + c² ≥ 1
=>minP = 1
dấu bằng xảy ra <=. a = b = c = 1/√3
( bài này sử dụng A + B ≥ 2C mà B ≤ C => A ≥ C)
k và kết bạn cho mình nha !!!
Chào các bạn mình có ý kiến như sau: Bài làm của bạn Thắng Nguyễn mik nghĩ rằng bị sơ xuất một chỗ là thêm lượng \(\frac{b^2+3}{7\sqrt{7}}\)
là không phù hợp vì nếu thay x=1/3 vào thì \(\frac{a^3}{\sqrt{b^2+3}}\)không thế bằng \(\frac{b^2+3}{7\sqrt{7}}\) do đó dấu bằng không xảy ra. Đó la ý kiến của mình, có j sai mong các bạn thông cảm
Sử dụng BĐT Bunhiacopxki cộng mẫu, lm bài toán sau:
Cho a,b,c là các số thực dương. CMR:
\(\dfrac{2\left(b+c-a\right)^2}{2a^2+\left(b+c\right)^2}+\dfrac{2\left(c+a-b\right)^2}{2b^2+\left(c+a\right)^2}+\dfrac{2\left(a+b-c\right)^2}{2c^2+\left(a+b\right)^2}\ge1\)
Cho các số thực dương a,b. CM BĐT :
\(\dfrac{2ab}{a+b}+\sqrt{\dfrac{a^2+b^2}{2}}\ge\sqrt{ab}+\dfrac{a+b}{2}\)
BĐT cần chứng minh tương đương :
\(\sqrt{\dfrac{a^2+b^2}{2}}-\sqrt{ab}\ge\dfrac{a+b}{2}-\dfrac{2ab}{a+b}\)
\(\Leftrightarrow\dfrac{\dfrac{a^2+b^2}{2}-ab}{\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}\ge\dfrac{\left(a+b\right)^2-4ab}{2\left(a+b\right)}\)
\(\Leftrightarrow\dfrac{\dfrac{\left(a-b\right)^2}{2}}{\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}\ge\dfrac{\left(a-b\right)^2}{2\left(a+b\right)}\)
\(\Leftrightarrow\dfrac{\dfrac{\left(a-b\right)^2}{2}}{\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}-\dfrac{\left(a-b\right)^2}{2\left(a+b\right)}\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(\dfrac{\dfrac{1}{2}}{\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}-\dfrac{1}{2\left(a+b\right)}\right)\ge0\)
ta phải chứng minh;
\(\dfrac{\dfrac{1}{2}}{\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}-\dfrac{1}{2\left(a+b\right)}\ge0\)
\(\Leftrightarrow\)\(\dfrac{\dfrac{1}{2}}{\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}\ge\dfrac{1}{2\left(a+b\right)}\)
\(\Leftrightarrow a+b\ge\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}\)\(\Leftrightarrow2a+2b-\sqrt{2\left(a^2+b^2\right)}-2\sqrt{ab}\ge0\)
\(\Leftrightarrow\left(a+b-\sqrt{2\left(a^2+b^2\right)}\right)+\left(a+b-2\sqrt{ab}\right)\ge0\)
\(\Leftrightarrow\dfrac{\left(a+b\right)^2-2\left(a^2+b^2\right)}{a+b+\sqrt{2\left(a^2+b^2\right)}}+\dfrac{\left(a+b\right)^2-4ab}{a+b+2\sqrt{ab}}\ge0\)
\(\Leftrightarrow\dfrac{-\left(a-b\right)^2}{a+b+\sqrt{2\left(a^2+b^2\right)}}+\dfrac{\left(a-b\right)^2}{a+b+2\sqrt{ab}}\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(\dfrac{1}{a+b+2\sqrt{ab}}-\dfrac{1}{a+b+\sqrt{2\left(a^2+b^2\right)}}\right)\ge0\)
ta phải chứng minh
\(\Leftrightarrow\dfrac{1}{a+b+2\sqrt{ab}}-\dfrac{1}{a+b+\sqrt{2\left(a^2+b^2\right)}}\ge0\)
\(\Leftrightarrow\dfrac{1}{a+b+2\sqrt{ab}}\ge\dfrac{1}{a+b+\sqrt{2\left(a^2+b^2\right)}}\)
\(\Leftrightarrow a+b+2\sqrt{ab}\le a+b+\sqrt{2\left(a^2+b^2\right)}\)
\(\Leftrightarrow2\sqrt{ab}\le\sqrt{2\left(a^2+b^2\right)}\Leftrightarrow\left(a-b\right)^2\ge0\)
Cho a,b,c là các số thực dương có tổng bằng 1. Tìm GTNN của biểu thức
\(P=\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{c^3}{\sqrt{a^2+3}}\)(Chứng minh BĐT dựa vào BĐT Cauchy)
Áp dụng BĐT AM-GM ta có:
\(\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{b^2+3}{7\sqrt{7}}\)
\(\ge3\sqrt[3]{\dfrac{a^3}{\sqrt{b^2+3}}\cdot\dfrac{a^3}{\sqrt{b^2+3}}\cdot\dfrac{b^2+3}{7\sqrt{7}}}=\dfrac{3a^2}{\sqrt{7}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{c^2+3}{7\sqrt{7}}\ge\dfrac{3b^2}{\sqrt{7}};\dfrac{c^3}{\sqrt{a^2+3}}+\dfrac{c^3}{\sqrt{a^2+3}}+\dfrac{a^2+3}{7\sqrt{7}}\ge\dfrac{3c^2}{\sqrt{7}}\)
Cộng theo vế 3 BĐT trên ta có:
\(2P+\dfrac{a^2+b^2+c^2+9}{7\sqrt{7}}\ge\dfrac{3\left(a^2+b^2+c^2\right)}{\sqrt{7}}\)
\(\Rightarrow P\ge\dfrac{\dfrac{\dfrac{\left(a+b+c\right)^2}{3}+9}{7\sqrt{7}}-\dfrac{3\cdot\dfrac{\left(a+b+c\right)^2}{3}}{\sqrt{7}}}{2}\ge\dfrac{\dfrac{\sqrt{7}}{21}}{2}=\dfrac{\sqrt{7}}{42}\)
Xảy ra khi \(a=b=c=\dfrac{1}{3}\)
am-gm :a3/V(b2+3)+a3/V(b2+3)+(b2+3)/x tự tìm số x dựa theo Min của bài (dự đoán a=b=c=1/3)
hint: cộng p/s đầu với 2 p/s nữa, rút gọn dc ĐPCM
Cho a, b, c là các số thực dương thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\) . Cmr
\(\sqrt{\dfrac{ab}{a+b+2c}}+\sqrt{\dfrac{bc}{c+b+2a}}+\sqrt{\dfrac{ca}{a+c+2b}}\le\dfrac{1}{2}\)
Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=1\)
BĐT trở thành: \(\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}+\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}+\dfrac{zx}{\sqrt{x^2+z^2+2y^2}}\le\dfrac{1}{2}\)
Ta có:
\(x^2+z^2+y^2+z^2\ge\dfrac{1}{2}\left(x+z\right)^2+\dfrac{1}{2}\left(y+z\right)^2\ge\left(x+z\right)\left(y+z\right)\)
\(\Rightarrow\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}\le\dfrac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{xy}{x+z}+\dfrac{xy}{y+z}\right)\)
Tương tự: \(\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}\le\dfrac{1}{2}\left(\dfrac{yz}{x+y}+\dfrac{yz}{x+z}\right)\)
\(\dfrac{zx}{\sqrt{z^2+x^2+2y^2}}\le\dfrac{1}{2}\left(\dfrac{zx}{x+y}+\dfrac{zx}{y+z}\right)\)
Cộng vế với vế:
\(VT\le\dfrac{1}{2}\left(\dfrac{zx+yz}{x+y}+\dfrac{xy+zx}{y+z}+\dfrac{yz+xy}{z+x}\right)=\dfrac{1}{2}\left(x+y+z\right)=\dfrac{1}{2}\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)
Vơi a, b, c là các số thực dương. CMR:
\(\dfrac{a}{\sqrt{b^2+ab}}+\dfrac{b}{\sqrt{c^2+bc}}+\dfrac{c}{\sqrt{a^2+ca}}\ge\dfrac{3\sqrt{2}}{2}\)
Áp dụng BĐT Cosi:
\(\dfrac{a}{\sqrt{b^2+ab}}=\dfrac{a\sqrt{2}}{\sqrt{2\left(b^2+ab\right)}}=\dfrac{a\sqrt{2}}{\sqrt{2b\left(a+b\right)}}\ge\dfrac{a\sqrt{2}}{\dfrac{2b+a+b}{2}}=\dfrac{2\sqrt{2}a}{a+3b}\)
Cmtt: \(\dfrac{b}{\sqrt{c^2+bc}}\ge\dfrac{2\sqrt{2}b}{b+3c};\dfrac{c}{\sqrt{a^2+ca}}\ge\dfrac{2\sqrt{2}c}{c+3a}\)
\(\Leftrightarrow P\ge2\sqrt{2}\left(\dfrac{a}{a+3b}+\dfrac{b}{b+3c}+\dfrac{c}{c+3a}\right)\\ \Leftrightarrow\dfrac{P}{\sqrt{2}}\ge2\left(\dfrac{a}{a+3b}+\dfrac{b}{b+3c}+\dfrac{c}{c+3a}\right)\\ \Leftrightarrow\dfrac{P}{\sqrt{2}}\ge\dfrac{2\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}\ge\dfrac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\dfrac{1}{3}\left(a+b+c\right)^2}\\ \Leftrightarrow\dfrac{P}{\sqrt{2}}\ge\dfrac{2}{\dfrac{4}{3}}=\dfrac{3}{2}\\ \Leftrightarrow P\ge\dfrac{3\sqrt{2}}{2}\)
Dấu \("="\Leftrightarrow a=b=c\)
Cho a,b,c là 3 số thức dương thỏa mãn a + b + c = 1/a + 1/b + 1/c . CMR
2( a + b + c) \(\ge\) \(\sqrt{a^2+3}+\sqrt{b^2+3}+\sqrt{c^2+3}\)
Giải:
Dễ thấy bđt cần cm tương đương với mỗi bđt trong dãy sau:
\(\left(2a-\sqrt{a^2+3}\right)+\left(2b-\sqrt{b^2+3}\right)+\left(2c-\sqrt{c^2+3}\right)\ge0\),
\(\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}\ge0\),
\(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{b^2}}}\ge0\)
Các bđt trên đầu mang tính đối xứng giữa các biến nên k mất tính tổng quát ta có thể giả sử \(a\ge b\ge c\)
=> \(\dfrac{a^2-1}{a}\ge\dfrac{b^2-1}{b}\ge\dfrac{c^2-1}{c}\)
và \(\dfrac{1}{2+\sqrt{1+\dfrac{3}{a^2}}}\ge\dfrac{1}{2+\sqrt{1+\dfrac{3}{b^2}}}\ge\dfrac{1}{2+\sqrt{1+\dfrac{3}{c^2}}}\)
Áp dụng bđt Chebyshev có:
\(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{c^2}}}\ge\dfrac{1}{3}\left(\sum\dfrac{a^2-1}{a}\right)\left(\sum\dfrac{1}{2+\sqrt{1+\dfrac{3}{a^2}}}\right)\)
Theo gia thiết lại có: \(\sum\dfrac{a^2-1}{a}=\left(a+b+c\right)-\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=0\)
nên ta có thể suy ra \(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{c^2}}}\ge0\)
Vì vậy bđt đã cho ban đầu cũng đúng.
@Ace Legona
Nice proof, nhưng đã quy đồng là phải thế này :v
\(BDT\Leftrightarrow\left(2a-\sqrt{a^2+3}\right)+\left(2b-\sqrt{b^2+3}\right)+\left(2c-\sqrt{c^2+3}\right)\)
\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}\ge0\)
\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{a}-a\right)+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{b}-b\right)+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{c}-c\right)\ge0\)
\(\Leftrightarrow\left(a^2-1\right)\left(\dfrac{1}{2a+\sqrt{a^2+3}}-\dfrac{1}{4a}\right)+\left(b^2-1\right)\left(\dfrac{1}{2b+\sqrt{b^2+3}}-\dfrac{1}{4b}\right)+\left(c^2-1\right)\left(\dfrac{1}{2c+\sqrt{a^2+3}}-\dfrac{1}{4c}\right)\ge0\)
\(\Leftrightarrow\dfrac{\left(a^2-1\right)\left(2a-\sqrt{a^2+3}\right)}{a\left(2a+\sqrt{a^2+3}\right)}+\dfrac{\left(b^2-1\right)\left(2b-\sqrt{b^2+3}\right)}{b\left(2b+\sqrt{b^2+3}\right)}+\dfrac{\left(c^2-1\right)\left(2c-\sqrt{c^2+3}\right)}{c\left(2c+\sqrt{c^2+3}\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(a^2-1\right)^2}{a\left(2a+\sqrt{a^2+3}\right)^2}+\dfrac{\left(b^2-1\right)^2}{b\left(2b+\sqrt{b^2+3}\right)^2}+\dfrac{\left(c^2-1\right)^2}{c\left(2c+\sqrt{c^2+3}\right)^2}\ge0\) (luôn đúng)
Khi \(f\left(t\right)=\sqrt{1+t}\) là hàm lõm trên \([-1, +\infty)\) ta có:
\(f(t)\le f(3)+f'(3)(t-3)\forall t\ge -1\)
Tức là \(f\left(t\right)\le2+\dfrac{1}{4}\left(t-3\right)=\dfrac{5}{4}+\dfrac{1}{4}t\forall t\ge-1\)
Áp dụng BĐT này ta có:
\(\sqrt{a^2+3}=a\sqrt{1+\dfrac{3}{a^2}}\le a\left(\dfrac{5}{4}+\dfrac{1}{4}\cdot\dfrac{3}{a^2}\right)=\dfrac{5}{4}a+\dfrac{3}{4}\cdot\dfrac{1}{a}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\sqrt{b^2+3}\le\dfrac{5}{4}b+\dfrac{3}{4}\cdot\dfrac{1}{b};\sqrt{c^2+3}\le\dfrac{5}{4}c+\dfrac{3}{4}\cdot\dfrac{1}{c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VP\le\dfrac{5}{4}\left(a+b+c\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2\left(a+b+c\right)=VT\)
#Chuyên mục: Giải trí cùng BĐT
BĐT luôn là một chuyên đề khó ở cấp THCS, học BĐT không những rèn luyện tư duy mà còn cho chúng ta cảm giác thư giãn khi giải xong một bài nào đó, rèn luyện cho chúng ta kĩ năng phối hợp những phương pháp c/m BĐT đã học! Vì vậy hôm nay mình xin mở chuyên mục :Giải trí cùng BĐT này, diễn ra vào thứ Hai hàng tuần (do hôm qua mình bận nên hôm nay mới đăng)! Mọi người hãy tìm những lời giải khác nhau cho những bài BĐT này nhé:)
Mở đầu bằng 1 bài toán cơ bản:) (nhìn căn thức vậy thôi chứ nó khá cơ bản:D)
Cho a, b, c là các số thực dương. Chứng minh rằng:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{1}{\sqrt{2}}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)
Cách 1
Áp dụng BĐT cosi ta có:
\(\frac{a^2+b^2}{b}+2b\ge2\sqrt{2\left(a^2+b^2\right)}\)
=> \(\frac{a^2}{b}+3b\ge2\sqrt{2\left(a^2+b^2\right)}\)
Tương tự
=> \(VT+3\left(a+b+c\right)\ge2\sqrt{2\left(a^2+b^2\right)}+2\sqrt{2\left(b^2+c^2\right)}+2\sqrt{2\left(a^2+c^2\right)}\)
Lại có \(\sqrt{2\left(a^2+b^2\right)}\ge a+b;\sqrt{2\left(b^2+c^2\right)}\ge b+c;\sqrt{2\left(a^2+c^2\right)}\ge a+c\)
=> \(VT\ge\frac{1}{\sqrt{2}}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{a^2+c^2}\right)\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c
Cách 2 tương tự dùng Buniacoxki
Cho a;c;b;d là các số thực dương thỏa mãn: a+b+c+d=\(1\)
Tìm Min của: \(A=\dfrac{1+\sqrt{a}}{1-a}+\dfrac{1+\sqrt{b}}{1-b}+\dfrac{1+\sqrt{c}}{1-c}+\dfrac{1+\sqrt{d}}{1-d}\)
Giúp mk với huhu. Mk cảm ơn....