A=\(\dfrac{(3x-1)^2-(x-1)^2}{4x^2-4x+1}\)
a, Tìm điều kiện của x để biểu thức A có nghĩa
b, rút gọn biểu thức A
Cho biểu thức A=(x^2+4x+5)×(4x-12)/2x-6
a. Tìm điều kiện của x để biểu thức A có nghĩa
b. Rút gọn biểu thức A. 😉😉
Cho biểu thức A = \(\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\)
a)Tìm điều kiện của x để A có nghĩa.
b) Rút gọn A.
c)Tìm x để A = \(\dfrac{-3}{4}\) .
d) Tìm x nguyên để biểu thức A nguyên.
a, ĐKXĐ:\(\left\{{}\begin{matrix}x+3\ne0\\x^2+x-6\ne0\\2-x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-3\\x^2+x-6\ne0\\x\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne2\end{matrix}\right.\)
b, \(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\)
\(=\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+3\right)}-\dfrac{5}{\left(x-2\right)\left(x+3\right)}-\dfrac{x+3}{\left(x-2\right)\left(x+3\right)}\)
\(=\dfrac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}\)
\(=\dfrac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\)
\(=\dfrac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)
\(=\dfrac{x-4}{x-2}\)
\(c,A=\dfrac{-3}{4}\\ \Leftrightarrow\dfrac{x-4}{x-2}=\dfrac{-3}{4}\\ \Leftrightarrow4\left(x-4\right)=-3\left(x-2\right)\\ \Leftrightarrow4x-16x=-3x+6\\ \Leftrightarrow4x-16x+3x-6=0\\ \Leftrightarrow7x-22=0\\ \Leftrightarrow x=\dfrac{22}{7}\)
d, \(A=\dfrac{x-4}{x-2}=\dfrac{x-2-2}{x-2}=1-\dfrac{2}{x-2}\)
Để \(A\in Z\Rightarrow\dfrac{2}{x-2}\in Z\Rightarrow x-2\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Ta có bảng:
x-2 | -2 | -1 | 1 | 2 |
x | 0 | 1 | 3 | 4 |
Vậy \(x\in\left\{0;1;3;4\right\}\)
a: ĐXKĐ: \(x\notin\left\{-3;2\right\}\)
b: \(A=\dfrac{x+2}{x+3}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{1}{x-2}\)
\(=\dfrac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}=\dfrac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}=\dfrac{x-4}{x-2}\)
c: Để A=-3/4 thì x-4/x-2=-3/4
=>4x-16=-3x+6
=>7x=22
hay x=22/7
Cho 2 biểu thức A = \(\dfrac{x^2+4}{x-4}\)và B = \(\dfrac{4+x}{4-x}-\dfrac{4-x}{4+x}+\dfrac{4x^2}{16-x^2}\)
a. Tính giá trị của A khi \(\left|x-1\right|\)= 3
b. Tìm điều kiện xác định và rút gọn biểu thức B
c. Tìm x để A + B > 0
a: |x-1|=3
=>x-1=3 hoặc x-1=-3
=>x=-2(nhận) hoặc x=4(loại)
Khi x=-2 thì \(A=\dfrac{4+4}{-2-4}=\dfrac{8}{-6}=\dfrac{-4}{3}\)
b: ĐKXĐ: x<>4; x<>-4
\(B=\dfrac{-\left(x+4\right)}{x-4}+\dfrac{x-4}{x+4}-\dfrac{4x^2}{\left(x-4\right)\left(x+4\right)}\)
\(=\dfrac{-x^2-8x-16+x^2-8x+16-4x^2}{\left(x-4\right)\left(x+4\right)}=\dfrac{-4x^2-16x}{\left(x-4\right)\left(x+4\right)}\)
=-4x/x-4
c: A+B
=-4x/x-4+x^2+4/x-4
=(x-2)^2/(x-4)
A+B>0
=>x-4>0
=>x>4
Cho biểu thức: \(A=\dfrac{2+x}{2-x}+\dfrac{4x^2}{4-x^2}-\dfrac{2-x}{2+x}\)
a) Tìm điều kiện xác định rồi rút gọn biểu thức A.
b) Tìm x để A = - 5
a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
\(A=\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\)
\(=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-4x^2-8x}{\left(x-2\right)\left(x+2\right)}=\dfrac{-4x}{x-2}\)
Cho biểu thức: P =(\(\dfrac{x+2}{3x}+\dfrac{2}{x+1}-3\)) : \(\dfrac{2-4x}{x+1}-\dfrac{3x-x^2+1}{3x}\)
a) Tìm điều kiện xác định của P
b) Rút gọn biểu thức P
c) Tính giá trị của M với \(\left|2x-5\right|=5\)
d) Với giá trị nào của x thì P = \(\dfrac{-1}{2}\)
e) Tìm các giá trị của x để M \(\ge-1\)
f) Tìm các giá trị x nguyên để \(\dfrac{1}{M}\) nhận giá trị nguyên
Bài 1. Cho BT A = \(\dfrac{4x+1}{x-1}\) và B = \(\dfrac{3x+1}{x^2-1}\) - \(\dfrac{2x}{x-1}\) + \(\dfrac{3x}{x+1}\)
1) Tìm giá trị biểu thức A tại x = 2
2) Rút gọn biểu thức B
3) Tìm tất cả các giá trị của x để /A.B/ = 4x
1: Khi x=2 thì \(A=\dfrac{4\cdot2+1}{2-1}=9\)
2: \(=\dfrac{3x+1-2x^2-2x+3x^2-3x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)
Câu 2: Cho biểu thức :
A= \(\left(\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x+1}}\right)^2.\dfrac{x^2-2}{2}-\sqrt{1-x^{ }2}\)
1) Tìm điều kiện của x để biểu thức A có nghĩa.
2) Rút gọn biểu thức A .
3) Giải phương trình theo x khi A = - 2 .
Cho biểu thức :P= \(\dfrac{1}{x^2-x}+\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+20}\)
a, Tìm điều kiện của x để biểu thức P có giá trị .
b, Rút gọn biểu thức P.
a, ĐK : \(x\ne1;2;3;4;5\)
b, \(\dfrac{1}{x\left(x-1\right)}+\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}\)
\(=\dfrac{1}{x}-\dfrac{1}{x-1}+\dfrac{1}{x-1}-\dfrac{1}{x-2}+\dfrac{1}{x-2}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-4}+\dfrac{1}{x-4}-\dfrac{1}{x-5}\)
\(=\dfrac{1}{x}-\dfrac{1}{x-5}=\dfrac{x-5-x}{x\left(x-5\right)}=\dfrac{-5}{x\left(x-5\right)}\)
Cho biểu thức sau C = (\(\dfrac{2x-x^2}{2x^2+8}-\dfrac{2x^2}{x^3-2x^2z+4x-8}\)).(\(\dfrac{2}{x^2}-\dfrac{x-1}{x}\))
a) Tìm điều kiện xác định của biểu thức C
b) Rút gọn biểu thức C
c) Tính giá trị của biểu thức C khi x = 2017
d) Tìm x để biểu thức C > \(\dfrac{1}{2}\)
e) Tìm x ∈ Z để giá trị biểu thức C ∈ Z
a: ĐKXĐ:\(x\notin\left\{2;0\right\}\)
b: \(C=\left(\dfrac{x\left(2-x\right)}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(\dfrac{2-x^2+x}{x^2}\right)\)
\(=\dfrac{-x^3+4x^2-4x-4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{x\left(x^2+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}=\dfrac{x+1}{2x}\)
c: Thay x=2017 vào C, ta được:
\(C=\dfrac{2017+1}{2\cdot2017}=\dfrac{1009}{2017}\)