Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Thùy Trang
Xem chi tiết
Hoàng Anh Khuất Bá
Xem chi tiết
Độc cô cầu bại
5 tháng 2 2019 lúc 16:37

xy+yz+xz=3xyz

<=> xy+yz+xz/xyz = 3

<=> 1/x + 1/y + 1/z = 3

Do vai trò x ; y ; z như nhau , ko mất tính tổng quát , giả sử 

\(x\ge y\ge z\) . Khi đó , ta có : 

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le3.\frac{1}{x}\)

\(\Rightarrow3\le3.\frac{1}{x}\)

\(\Rightarrow1\le\frac{1}{x}\)

\(\Rightarrow x\le1\)

Mà x nguyên dương nên x = 1

Làm tương tự như vậy , ta có : y = 1 ; z = 1

Vậy .... 

River flows in you
5 tháng 2 2019 lúc 16:44

Sai rồi bạn , nếu làm như bạn , phải giả sử 

\(\ge y\ge x\)chứ 

:v 

Hoàng Anh Khuất Bá
6 tháng 2 2019 lúc 6:57

thank nha

giúp t nốt câu này 

Cho x,y là các số nguyên dương và x+y=2. Tìm GTNN của \(\left(1-\frac{4}{x^2}\right)\left(1-\frac{4}{y^2}\right)\)

Lê Phương Trà
Xem chi tiết
Lê Thanh Nhàn
Xem chi tiết
Lê Thanh Nhàn
13 tháng 6 2020 lúc 23:26

@Nguyễn Việt Lâm

Nguyễn Việt Lâm
13 tháng 6 2020 lúc 23:44

Bunhiacopxki: \(\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)\ge\left(xy+yz+zx\right)^2\)

\(\Rightarrow\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)

Thiết lập tương tự và cộng lại:

\(\Rightarrow VT\le\frac{xy\left(y^2+yz+zx\right)+yz\left(z^2+xy+zx\right)+zx\left(x^2+yz+xy\right)}{\left(xy+yz+zx\right)^2}\)

\(VT\le\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\)

Ta chỉ cần chứng minh: \(\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\le\frac{x^2+y^2+z^2}{xy+yz+zx}\)

\(\Leftrightarrow xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz\le\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2yz+xy^2z+xyz^2\le x^3y+y^3z+z^3x\)

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge x+y+z\) (đúng theo Cauchy-Schwarz)

Dấu "=" xảy ra khi \(x=y=z\)

Lê Thanh Nhàn
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 6 2020 lúc 17:19

BĐT của bạn bị ngược dấu, mà có vẻ các mẫu số cũng ko đúng (để ý mẫu số thứ 2 và thứ 3 đều có chung xy+xz ko hợp lý)

quoc trananh
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2020 lúc 9:26

Ta có: \(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left[\left(x+y\right)^3+z^3\right]-\left[3xy\left(x+y\right)+3xyz\right]\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-\left[3xy\left(x+y+z\right)\right]\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-zy+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-zy+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)(đpcm)

Phùng Kiên
Xem chi tiết
Akai Haruma
13 tháng 11 2018 lúc 22:31

Đề bài là gì bạn?

Akai Haruma
25 tháng 11 2018 lúc 20:52

Sửa đề: Tìm các số nguyên dương $x,y,z$ thỏa mãn $x+y+z=3xyz$, nếu chỉ là số dương không thôi thì vô cùng vô tận.

Lời giải:

Không mất tính tổng quát giả sử \(x\geq y\geq z\)

Ta có: \(xy+yz+xz=3xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

\(x\geq y\geq z\Rightarrow \frac{1}{x}\leq \frac{1}{y}\leq \frac{1}{z}\)

\(\Rightarrow 3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\leq \frac{3}{z}\) \(\Rightarrow z\leq 1\)

Mà $z$ nguyên dương nên \(z=1\). Khi đó: \(\frac{1}{x}+\frac{1}{y}=2\leq \frac{1}{y}+\frac{1}{y}=\frac{2}{y}\)

\(\Rightarrow 2y\leq 2\Rightarrow y\leq 1\). Mà $y$ nguyên dương nên $y=1$

Với $y=1,z=1$ thay vào ta có $x=1$

Vậy $(x,y,z)=(1,1,1)$

Lenkin san
Xem chi tiết
Akai Haruma
16 tháng 7 2019 lúc 23:56

Lời giải:

Áp dụng hằng đẳng thức dạng:

\(a^3+b^3=(a+b)^3-3ab(a+b)=(a+b)(a^2-ab+b^2)\) ta có:

\(x^3+y^3+z^3-3xyz=(x+y)^3-3xy(x+y)+z^3-3xyz\)

\(=[(x+y)^3+z^3]-[3xy(x+y)+3xyz]\)

\(=(x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z)\)

\(=(x+y+z)(x^2+y^2+2xy-zx-zy+z^2-3xy)\)

\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)

Ta có đpcm.

Akai Haruma
18 tháng 6 2019 lúc 11:49

Lời giải:

Áp dụng hằng đẳng thức dạng:

\(a^3+b^3=(a+b)^3-3ab(a+b)=(a+b)(a^2-ab+b^2)\) ta có:

\(x^3+y^3+z^3-3xyz=(x+y)^3-3xy(x+y)+z^3-3xyz\)

\(=[(x+y)^3+z^3]-[3xy(x+y)+3xyz]\)

\(=(x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z)\)

\(=(x+y+z)(x^2+y^2+2xy-zx-zy+z^2-3xy)\)

\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)

Ta có đpcm.

Tử thần Cô Văn Nan
Xem chi tiết